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ABSTRACT

CALSIM: A COMPUTER HARDWARE DESCRIPTION

LANGUAGE FOR COMPUTER SCIENCE EDUCATION
Publication No.

W. A. Skelton, Ph.D.

The University of Texas at Arlington, 1982
Supervising Professor: Stephen Underwood

A computer hardware description language (CHDL) and
its compiler/simulator system, designed for student use at
graduate and undergraduate levels are described. The system
is usable above the switching circuit level and incorporates
features to investigate designs using microprogramméble com-
ponents including bit-sliced chips such as the the AMD--2900.

The order of executidn in the simulator is controlled
by an event table using each time/component as a separate
event. The handling of event timing for items copied from
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the library of components is unique in that the individual
times may be changed as they are copied into the active
file. The system also allows the user to make several cop-
ies with a single statement and adjust the timing of each
copied item separately.

The LALR formal grammaf, presented in the Appendix,
was develeoped to make the English-like language follow as
closely as possible the hierarchic structure of the system
being described. This supports. a hierarchic design process
through the sytem, programming and register transfer levels.
Use of the language below the " pit level has not been
investigated.

The contents of the main memory, micromemory and up
to three (3) auxiliary ifemories are developed separately and
read from files into the program memory prior to simulation.
The simulation driver incorporates breakpoints, trace, dis-
play and other tools needed to follow the simulation which
may be carried out in either step-wise or run-to-break fash-

ion. The interactive system is written in Cobol and resides

on the DEC-20.

The system has been used one semester for a graduate
course in computer organization. The User's Manual (Appen-
dix 6) contains examples from flip-flops to microprogramming

and show examples, diagrams, explanations, and coded

descriptions of the logical device.

vii
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CHAPTER I

INTRODUCTION

Background

Although microprogramming dates from the early fifties
(107), and Computer Hardware Description Languages (CHDL's)
date from the early sixties (24), effort to adapt the CHDL's

for use with bit-sliced microprogrammable computer architec-

ture design and development has not been entirely successful
(92). To a large extent, each area has developed separately
serving the technology of the time in it's own way. A Com-
puter Hardware Description Language and software support
system is described here which adapts the technology'of the
CHDL's for use in design studies using bit-sliced compon-
ents. Since the system is usable as low as the bit level,
it can be used for Computer Science education courses from
Computer Organization to Microprogramming.

An increase in the use of bit-sliced components for
application hardware was predicted for the eighties (75).
The families of bipolar, bit-sliced components offers the
developer more design freedom and a better organized

approach than conventional computer architectures (14).

1
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These are available from sources such as the Advanced Micro
Devices AMD-2900 or Texas Instrument SN-745481 (2).

However, as Alexandrididis (5) states, "The advant-
ages of bit-sliced microprocessors are not free -~ they
require a serious investment in system support software".
Currently, application designs using bit-sliced hardware are
developed using custom software, simulators, and prototypes
supported by extensive hardware monitoring tools (29). This
high initial cost of support hardware and the prospect of
prepvaring custom software causes many designers to avoid
approaches wusing bit-sliced technology (5) and precludes
extensive use in Computer Science Education where funds may

be limited.

It is evident that the CHDL's have not met the need
for development software since more expensive methods are
still widely used (1), both in industry and Computer Science
education. Several reports, however, have been published on
the use of CHDL's in Computer Science education (19), (23),
(40), (99) and others have addressed the use of CHDL'S for

applications with bit-sliced hardware (43), (50), (72).

- Premises on Which the System is Designed

R

The extensions and differences of Calsim (Computer

Architecture Language for Simulation) and its software
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system . from existing CHDL's were developed based on three
premises. First, a change will occur in the eighties in the
fundamental way logical devices are designed due to the
increased size of the chips available. Bit-sliced chips are
predicted to be among those which will have increased use
(2). Second, increased emphasis should be placed on the use

of these components in Computer Science Education. Third,
the best way to teach this subject is to use a CHDL for all

Computer Science courses where a CHDL is applicable.

classification of CHDL'S

The primary method of classifying CHDL'S is by the
level of abstraction of the language. This has varied from
four to seven levels by different workers in the field.
Throughout this treatise, five levels will be used as
reported by Barbacci (14) =-- PMS (roughly equivalent to
system) programming, register transfer, switching circuit
(roughly equivalent to gate), and circuit level.

CHDL'S may be intended primarily for either simulation
at a particular level of design or the generation of design
details below the level described. Each of these may also

be further divided depending on the level of abstraction.
Hardware language also vary depending on the intended

user -~ academic, industry, with further divisions under
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4
each. Obviously the more detail that is incorporated into a
model, the more expensive it will be. Cost is reflected in
all aspects of the system: software cost, operation and
maintenance cost, user learning time, and the time required
for the user to develop the hardware description.

Many.of the CHDL'S also address specific problems or
portions of computer technology -- input/output, graphics,
asynchronous operation, timing problems. Lastly the various
CHDL'S reflect the technology of the time in which they were
developed, changing their emphasis as technology changes.

Each CHDL will be usable over only a portion of this
broad area; usually there are secondary uses on the fringe

of the primary uses. There is no universal CHDL, however.
Targeted Use for the Language and the System

The system presented here is designed for the register
transfer, programming, and system levels and specifically
addresses microprogramming capabilities, use of multiple and
bit-sliced components. The language reflects the current
technology using the LSI as the basic building block and is
intended for simulation studies in Computer Science from
micro-programmable system designs through flip-flops in an
interactive system.

The system description is hierarchic and supports a
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hierarchic design process, thus allowing successive exam-
ination at system, programming and register transfer levels.

Hierarchic design is discussed by vanCleemput (100).
Comparison of Calsim to Six Popular CHDL'S

Appendix one (1) compares Calsim with six currently
popular languages. These were chosen to represent various
types available and to more clearly define the position of
Calsim in the broad area of CHDL uses. Calsim is shown in ;
the middle of the table with "**" at items where the
difference is significant. A brief discussion of the

differences follow.

The time event table uses both a time event, as
commonly used in simulation languages such as SIMSCRIPT
combined with the part component number. Since a time
'RESET' is also available, branching can be accomplished
easily. The need for "major labels" and branching was

pointed out in (49).

Memory handling in Simcal requires that the memory
content be read from a file and further provides for both
micromemory and up to three (3) other memories to also be

read into the simulator's main memory.

Special syntax is used by Calsim to describe the type

of data being sent or received so that conversion at the
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6
simulators terminal will be in readable characters. The
port (terminal) descriptions in Simcal allow the user to
specify the type of data expected from the port or is being
sent to the port. The simulator converts the data to or
from Ascii so that it is readable if outputted or can be
inputted as Ascii and sent to the computer in its correct
format. Heath, Carroll, and Cwik discuss the need for data

conversion of simulation output in terms of a postprocessor

(49); this idea has been adapted to an interactive system.
Time Resetting System for Copied Items

The nature of the targeted system demanded that the
library utility facilitate copying groups of components with
minimum difficulty. Since no method of handling the problem
could be found in other systems, the multiple copy command
was developed. It is available in addition to the command
which allows the user to suffix a component name. As each
component copied may have several time events within its de-
scription, the copy command was then modified to allow both
multiple times within the component description to be either
replaced or modified as well as allowing several replicates
to be made by a single statement. The details of the
library and time resetting systems are discussed in sections

3.10 AND 3.11 of the Users' Manual (Appendix 6).
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Other Extensions for Computer Science Education

1. Calsim offers the user freedom to represent the ma-
chine being studied without being bound to preconceived
patterns of computer architecture, such as the fetch/

execute cycle. See (44) and (100).

2. Calsim faithfully represents the physical organi-
zation down to the bit level and may be wused at the
gate level. Most register transfer CHDL'S give this
aspects get little attention. This principle is dis-

cussed at by Borrione in (18) and Bressy in (19).

3. Calsim resembles English to a much greater extent
han most other CHDL's. Although Chu stated in the
early sixties that CHDL's should resemble a natural

language (28), most of the CHDL'S are more cryptic than

a natural language.

4. The data conversion -available 3in the I~0 chip has

already been discussed. Calsim also allows logical ac-
tion within the chip and allows the port to be "tied"

to a file so thét data can be transmitted to and from a
file directly. Important aspects of input-output are

discussed by Parker and Wallace in (77) and (102).
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5. Since Calsim must operate at the bit level to ful-
£ill its intended purpose of manipulating the bit pat-
terns thfoughout a microprogrammable machine, data
types are not used. The user, of course is élways free

to "build" data types into his hardware design.

The Software support System -- User's Viewpoint

The software support system used with Calsim is called
SIMCAL (Simulator for Computer Architectural Language). It
contains four primary sections in an interactive environment
which follow the pattern found in most software support sys-
tems for CHDL's. The compiler verifies the syntax of the
description, converts the English-like language of the hard-
ware description into tables. and checks for errors or
omissions. The second section, a simulator driver, inter-
faces the user to the simulator, providing exteﬁéive user
support for céntroling execution and showing status of the
simulated logical device. The third component, the simula-
tor itself, carries out the actual simulations commanded by
the user in the simulator driver, stopping at break points
as instructed. The last part embraces the support programs

- Documantation, Library, Help, Table Preparation, and

Memory Read-in.
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CHAPTER II

HARDWARE DESCRIPTION LANGUAGES

What are Hardware Description Languages?

In every specialized field, one finds unique ways of
expressing thoughts, designs and ideas. So in a broad sense
"Development of Computer Hardware Description Language's
(CHDL's) began at the same time as the birth of the compu-~
ter" '(72). In 1964, Schorr (88) stated "No adequate way of
describing a digital system in terms of sequential circuit
theory, nor to present this information to a computer, 1is
known". He then suggested a register transfer language as a
way of coping with the "Heuristic methods of design'. The
same year a formal language called LOTIS (Logical Language
for Timing and Sequencing) was proposed by Schlaeppi (87).
He suggested~that software could be prepared to use the sem-
antic output from syntactical analysis of the language to
both simulate performance and to synthesize circuits.

In 1965, Chu (26) proposed another language in his re- '
port on CDL (Computer Design Language). He used a level of
abstraction, 3just above the electronic component level, now

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionWWW manaraa.com



10

commonly referred to as "Register Transfer Level" to
accomplish his stated purpose "To bridge the gap between

hardware and software design".

Since then, the proposed uses of CHDL's have greatly
expanded and one finds with this expansion, invention of new
names for the term CHDL -- ADL (Architectural Description
Language), SDL (System Design Language), HDL (Hardware
Description Language) among others. Whatever the generic
name and specialized or extended uses, they are generally
considered a CHDL by the Computer Scientists working in the
field. 1In addition to communication among the designers
studying a system, the CHDL's are expected to communicate to
a computer sufficient data to create a simulator for the
described hardware and automatically generate the circuits
below the level desqribed as proposed by Schlaeppi (87).
Needless to say, these requirements greatly affect form and
content of the proposed languages. See Shiva (89) for a
tutorial on CHDL'S.

The languages have been classified as either procedur-
al or non-procedural depending upon the syntactic organiza-
tion and the emphasis on various aspects of the hardware.
Vogel proposes a third approach in (103) consisting of a
language based on "Mathematical modeling of real-time auto-
mation encdmpassing the concept of time". Lipovski, however

takes a simpler view and calls the CHDL's "A variation of a
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programming language tuned to the overall needs of describ-
ing hardware" (71). Baer (11) states "We can justify CHDL's
only because they bring more clarity and impose less -com-
plexity in the data and control structure of the specific
application". However the difference. between CHDL's and
programming languages is much more fundamental than indica-
ted by the superficial appearance of the two families of
languages.

The difference in purpose between the CHDL's and pro-
gramming languages is sometimes clouded by the similar
constructions of the two. The programmng languages are
vitally concerned with algorithmic processes; the CHDL's

algorithms are limited. The programming languages use

s

complex data structures; the CHDL's data structures are
usually limited. The CHDL's rust address timing construc-
tively; the programming languages either ignore timing or
treat it as a peripheral issue. The CHDL's must Dbe con-
cerned with hardware organization; programming languages do
not even contain such a concept and if addressed at all, it
must be done by the language user. -

The two types of languages use many of the same basic
elements to build their structure, just as a car and a truck
use the same basic components. The end use, however, is so
different that the actual language design must be, or should

be affected in numerous important areas.
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A complete CHDL addresses both the physical and
functional aspects of the hardware. The physical aspects
include component names, connectors, number and name of
pins, wiring, physical organization, registers, and clocks.
.The functional aspects include a description of how the
logic state within the hardware changes, how the state is
stored, and timing of the 1logic flow. Among the many

languages in use, one finds a wide variation in the levels
of abstraction, the physical/operational emphasis, the for-
mal syntax and grammar. For the purpose of this report, we

-i1l1l use the following definition of a CHDL.

A Computer Hardware Description Language is a
language defined by a formal set of syntactic and
semantic rules which can be used to precisely de-
scribe significant portions of both the physical
and functional aspects of a logical design and will

support a simulator, hardware generator or both.

Proliferation of Hardware Description Languages

CHDL's have been investigated and reported since the
early sixties (95), (87). Their value in the areas of
design description, organization of design information,

teaching of computer science, documentation, automatic
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circuit generation and simulation have been recognized and
described (24), (59), (60), (76). Su has reported on
twenty-one (21) CHDL's in the U.S. (96). More than a dozen
languages have been reported by Vaucher and others outside
of the U.S., (102). Since publication of those reports in
1974, many additional languages have Dbeen reported. Chin
has described a language to be used graphically called
FLOWWARE (23). Stewart has described a language called
LOGAL (Logic Algorithmic Package) and a software system
called LADS (Logic Algorithmic Design) (94). Analuf has
introduced a language for logic and timing (7), Parker and
Wallace have proposed a special input/outout Hardware De-
scription Language (77), (104). Tomek has reported a
simulation language called HARD (Hardware Simulation in
Education) to be used exclusively for teaching Computer
Science. (99). These and many others have proposed new
approaches to established uses and extensions of the
functions the languages perform. See Appendix 2 for a list

of the published languages.

Lipovski describes the proliferation of HDL's, called
by him the "Tower of Babel", and suggests industry coopera-
tion as a solution to the problem (71). In spite of the
obvious problem with multiple languages, they continue to
proliferate. Smith recognized this and stated in the begin-

ning of a paper presenting a new language "... the ration-
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ale for creating yet another Computer Hardware Description
Language in a field already stocked with languages...'(93).
(His stated purpose 1is to reduce dépendance on labels,
increase readability, and efficiency). Heath, Carroll, and
Cwik in (48) stated "CDL was found to be quite cumbersome to
use, ..." and then described modification of several CDL
constructions. Su states in (98) "The process of
transferring a high level computer hardware description
language specification of a system into a logic diagram is
still in its infancy."

A committee(Conlan), chaired by R. Piloty, was formed
to study ways to bring more order and uniformity to CHDL'S,
but apparently has been unable to reach an agreement since

no publications from the committee were found.

Since the introduction of CHDL'S two decades ago, over
50 additional languages have been proposed and over 200
papers have been published on the topic. Each of the pro-
posed languages extends existing languages to include a new
function or addresses an old function in a different way.
In many cases the languages are devised to overcome problems
reported in the technical journals by workers in the field.

©

Appendix 1 summarizes 50 of the languages discussed in the
references and some of the important characteristics of each

language. There is no indication that proliferation has

abated.
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An Overview of CHDL's

The listing in Appendix 2 illustrates the great varie-
ty of Computer Hardwgre Description Languages which have
been written and implemented. The brief discussion of each
is intended to give the reader an overview of progress in
this field and provide some of the distinguishing char-
acteristices of each language.

The name of each language, usually an acronym, is
given first followed by the meaning of the acronym, the

authors name and the date of the original article. The

references are listed in the order of importance in provid-
ing material for the entry. They have been used freely in
obtaining direct quotations and paraphrasing for the para-
graphs on "Purpose" and "Discussion" of the language.

Each new language developed, presumably, solves a
current problem or performs new functions not being perform-
ed by existing languages. In some cases the author of the
reference material has stated explicitly the purpose of the
new language, but in many others the reason for the new
language must be inferred from the text of the article. 1In
either case the reason presented in the Appendix is derived
from the material in the text of the article to the greatest

extent possible.

The "Discussion" paragraph centers around the primary
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characteristics and uniqueness of the language and where in-
formation is available, implementation. It would be desir-

able +to discuss each language using the same format and
exploring the same aspects of the language such as grammar,
concurrency, level of abstraction, etc. However, this is not
possible as the authors have not discussed the same charact-
eristics in their respective papers. The entry therefore

reflects the emphasis used by the author of the reference.
Anatomy of a Computer Hardware Description Language

The question as to what a CHDPL is has already been ad-
dressed, but no details were provided as to the component
parts of the CHDL. We now examine the parts commonly found
in a CHDL, restricting the discussion, to the language it-

self, not it's means of implementation.

Registers, Subregisters, and Cascade Registers: Each
CHDL must have a way to declare the existence of certain
registers and to specify their sizes. In some languages the
user is allowed two dimensions, thus is able to create a
series of regisﬁérs with a common name. The languages use
both left to right anq right to left numbering of the bit
positions, some allowing one, some the other, and a few

allowing the user to choose. A single flip-flop is usually
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regarded as a one-bit register. The usual form of register
description is to use a key word, usually "REGISTER",
followed by the dimension(s) in parenthesis. Calsim follows
this form, using “"REGISTER" followed by the register name
with +the dimensions in parenthesis. Calsim will accept two
dimensions, the first is the bit length; the second is
optional and may be used to establish a group of registers
with same name to be accessed by subscript.

It is usual to include a means to describe parts of a
register as a subregister just as the term is ordinarily us-
ed with hardware. A means is also usually present to
cascade two or more registers to form a longer register with
a new name. Calsim supports both sub and cascade registers

using the keywords "SUBREGISTER" and "CASCADE" .

Special Registers: Some CHDL's have given special
treatment to the registers common to conventional computers
such as SP (stack pointer), MAR (Memory Address Register),
PC (Program Counter), IR (Instruction Register), MDB (Memory
Data Buffer). Since each of the special registers are
treated in a special way within the respective software sup-

. port systems, the user must be aware of the restrictions on
the system in use and its implication during simulation.
Since Calsim, like several other languages, makes no assump-

tions as to architecture, it uses no special registers.
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e Hierarchical Groupings: With respect to this property,
the CHDL's seem to be divided into two groups, one emphasiz-
ing the CPU portion of a computer with other devices as ap-
pendages to the CPU and the second is more system oriented.
Many of the first were developed to synthesize the internal
circuits in the CPU. The second group of languages perform
these same functions and also allow grouping of the logical
components at several levels using some type of connection

or communication between the components. Calsim is the lat-

ter type allowing up to 29 levels of hardware descriptions,
thus directly supporting a hierarchical design process as
described by vancleemput (100). However, Calsim will not

support design descriptions below the register transfer

level.

Connectors: In many register transfer languages, the
values can be transferred and tests made without regard to
actual hardware connections; they are assumed to exist.
Languages like Calsim, which accept hierarchical descrip-
tions, also perform in the same manner within each component
description. Between components, however the connectors
must be declared, and a means of communication established
between the chips. Calsim does this by describing the con-
nectors in a "CONNECTION" statement and connecting the com-

ponents to each other with a "WIRING" statement.
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Signals: The signals in most CHDL's are only O and 1,
but in few languages the signal may also be defined as
"unknown", "high impedance", or "open"; Calsim permits four
states, combining "high impedance and "unknown". Values of
zero and one have the usual meaning as used in hardware

descriptions. Wires not connected to any component are

"open".

Data Types: All programming languages allow the user
to specify by some means the data type of wvariables and
stored characters. Most languages have integers, character,
and floating point formats and may also include double
precision and some type of packed decimal or BCD. In those
CHDL's which are closely related to programming languages,
these same data types are usually present. In other
languages such as CDL and Calsim, where such types would
mask the primary objective of the language, data types are
not used. All data is simply strings of zeroces and ones.
Calsim, however, provides for data types associated with
each port (terminal) so that conversion to/from ASCII format
at the simulated terminal is accomplished.

I-0 and Terminals: If the terminal in the "designed"

machine is an ASCII terminal, then some action in the ma-
chine or program being simulated will have produced a con-

version to the ASCII format. Ports or terminals which are

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionwww manaraa.com



20

used for input or output of other formats such as BCD must
be converted if they are to be displayed properly at the
ASCII terminal interfacing the DEC-20. It is not desirable
to require the user to make the translation himself. If a
design, for example, includes a series of ports reading BCD,
ﬁhe user should be able to introduce at the proper point in

simulation a series of numbers values which would be

converted to BCD by the simulator.

Timing: A wide variety of approaches to timing have
been used by CHDL's. The most simple approach is to use each
statement (in a procedural CHDL) as a "tick" of the clock.
and advance the timing one cycle. The simulation then
progresses through the instructions just as execution of a
program progresses through the instructions. Such languages
usually allow looping, and "GO TO" statements of various
types which is equivalent to resetting the clock. Many

variations of this basic idea have been used.

Calsim uses an event clock which the user must set for
each executable component. The active components may have
simulated concurrent operations, and each component may use
several events. Resetting may be called for in the hardware
description language or it may be dynamically reset during
simulation as the result of a test. The Calsim system

allows the user to "HOLD" by the looping just described.
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Concurrency: If a CHDL supports concurrency, addi-
tional checking must be performed during simulation. This
is handled in a variety of ways, but they all involve set-
ting flags of some type to assure that all actions have been
taken before proceeding to the next step. Closely connected
with this, is the handling of asynchronous operations. In
some cases the language must provide special construction to
escape its fetch/execute cycle so interrupts can be serviced

in an asynchronous manner.

The Calsim/Simcal system uses an event table in which
any number of active components can share one or more
events. Those operations are then carried out in the order
entered, but no data is placed on the connectors to/from the
component until all of the components sharing a time event
have completed execution. If there is data being passed
between two or more components as they execute concurrently,
then smaller time slices are used to further divide the time
increments. If a loﬂg series of operations must occur in
one or more components, then these can be listed under a
single timed event, thus precluding the transfer of the

signals to the connectors until both components have

completed the computations.

Storage/Retrieval of Prechecked Descriptions: Several

languages contain "MACROS" which are closely akin to the
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same item found in assembly languages. Calsim does not use
Macros in that sense, but uses a "COPY FROM LIBRARY" concept
as found in high level language compilers. In Calsim, a
library of components may be written, prechecked, and
stored; then copied from the library into the hardware

description.

The copy clause has been extended to allow the user to
make multiple copies of the item, a situation found in most
designs, but particularly in those supporting bit-sliced
components. As the items are copied two digits are affixed
to the end of the name giving each a unique identity. An
alternate method allows the user to add a suffix to

the component identifier.

Calsim also allows the user to adjust the time found
within the items copied. This may be done even when there

are several times within the item and when several items are

copied with a single statement.

Elements of Software support Systems for CHDL's

If a CHDL is to do more than provide communication a-

mong personnel, a software support system must be prepared

which will read the language and perform functions in
response to the description. It is usually prepared follow-

ing the language design rather than concurrently with it and
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must perform one or more of several functions. The software
may be designed for batch use or for interactive support; it
may be a single program or a group of programs; may provide
little or significant support. A description of these
functions with special attention to the support software for

Calsim follows.

Compilation: Compilation is widely recognized as con-

sisting of three tasks (6), namely:

(1) Lexical Scanning.
(2) sSyntactical Analysis.

(3) Generation of Semantic Output.

The hardware description l;nguage compilers follow the
same form and like the programming languages must output
both data structure and executable code. In the seventies,
the grammar of programming languages came to be understood
well enough that syntax directed compilers could be written
which would be driven by tables from grammar analyzers (6).
The compiler writer still must prepare the lexical scanner,
a relatively simple task, copy the syntax algorithm and pro-
vide the semantic output statements. Although the semantic
output, by far the largest of the tasks, still must Dbe

prepared, the task is now highly structured into small
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manageable pieces. The Calsim compiler was developed using
the LALR grammar analyzer by LaLonde of the University of

Toronto (63) and residing on the UTA IBM-4341.

Interpretation: Interpretive languages, such as “~APL,
must perform the samé syntactic checks as are performed in
compilation, but tables are not created from the
description. The incoming code is executed directly. 1In

such cases data items have been previously declared, with

storage already established.

Simulation: Even though several functions other than
simulation may be performed by software for a CHDL, the
software may be referred to as a simulator. The discussion
here will be centered on the simulation itself, not the
other functions. The simulator actually performs two (2)

separate and distinct functions --

(1) Interfacing withH the User.

(2) carrying Out the Execution.

The first of these, called "Simulator Driver" inter-
faces with the user, accepting the commands given, analyzing
for correct syntax, setting various flags and finally

passing control to the simulator. The simulator itself
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carries out the 1logical operations which represent the
machine logic, testing the flags previously established for
needed displays and breaks and finally returning control to
the simulator driver. In a batch environment, the first
function is usually managed by a deck of formatted control
cards. 1In an interactive environment the service performed
by the driver for the user is usually broader, but varies
widely up to that represented by the following functions.
The reader should note the similarity between this list of
functions and those performed using instruments to bench

check a hardware prototype.

1. Preventing loss of user control of the simulator.
2. Wide capability to set break points.

3. Step-wise execution.

4. Execution through a given number of steps.

5. Use of "MENUS" to sect-up display patterns.

6. Means to change values in the simulated machine.
7. Display of values in registers, wires, memories.
8. A TRACE command to follow the execution path.

9. A record (history) of where execution has occurred.
The actual simulation in languages oriented around an

instruction set, follows the pattern of the instruction set.

They basically follow a tree like structure to arrive at the
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particular instruction. When the necessary data moves or
calculations are completed, the simulator is ready for the
next instruction. When action is taking place concurrently
in several units, as it is in most real devices, the action
is more complex. Many CHDL's simply execute the logic in
the order submitted using "GO TO" to provide repetition when
required, while others, such as Calsim, wuse a table of
events and provide a method of resetting .the time. If
concurrency is addressed, then the software system must have
a way to assure that simulated concurrent actions fully
represents the action without producing erroneous results.
Calsim takes the incoming logic from the description,
reduces it to compressed symbology, performs a slight amount
of rearranging and stores it for use by the simulator. The
grammar of the stored logic is also LALR and the simulation
is driven by LALR tables. At the start of execution, the
"current" time points to the 1location in the event table
where the first instruction is found. The process then pro-
ceeds through the table incrementing time and executing the
logic for each component in turn. At the end the process

loops back to zero time or to the pre-set time values unless

the order has been changed by a RESET entry.

Synthesis of Circuits: The emphasis in the early

years was to relieve the designer of the tedium of producing

Reproduced with permission of the copyright:-owner. Further reproduction prohibited without permissionyyanw.manaraa.com



27
electronic designs at the gate level and below which
contained hundreds or even thousands of repetitions of the
same circuits. Sometimes such software would also generate
graphics representing the logic design. System and computer
design now start with medium scale integrated circuits
(MSI's), 1large scale integrated circuits (LSI's), and very
large scale integrated circuits (VLSI's), chips containing
up to 100,000 gates. The original problem no longer exists
in circuit design of application hardware composed of these
large chips. The problem, however, is intensified in the
design of the chips themselves, making this a primary
function 1in that area. The system presented here is
intended for the study of application hardware and systems

using these large chips. Synthesis of circuits is not

addressed in this work. One of the other languages are

needed to address hardware at the switch circuit level and

below.

Storage/Retrieval of Multiuse Code: While copying of

~ stored code is rather common in programming languages, there
is little mention of it in CHDL references. The use of
MACROs has already been discussed. There appears to be a
much greater need to apply a "copying" technique to the use

of CHDL's since most system designs contain only a few

components used several times. In a given facility,
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activity is usually limited to two or three families of
chips. Each family may have 10 to 30 members depending on

the type of chip. The bit-sliced families tend to be nearer

the upper value.

Miscellaneous Other Functions: The support software

must perform several other functions such as :

(1) Provide user assistance as requested.
(2) Print tables of read-in data.

(3) Provide documentation.

(4) Accept and store memory content.

(5) Provide status of certain actions.

Special Problems with a CHDL for Bit-slice Hardware

Microprogramming itself présents several special
problems in designing a CHDL and the support software for
the compiler and the simulator. If architecture is bit-
sliced also, using the type of components found in the

AMD-2900 series, TI SN-74S481 and SBP-0400A/401A or Intel
3000 series, then additional problems of handling arise.

Thecse are discussed below.

Memories: A structure for microprogramming-will always
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require at least one additional memory, and in many cases
other ROM's (Read Only Memorys) will also be required. The
contents of these memories, being essential to even minimum
testing, requires that means be provided to conveniently
enter the data through a file structure. The Calsim system
addresses this by providing read-in capability for main,
micro, and three auxiliary memories. The data for these
memories can be prepared, edited by any convenient means
then read into the Simcal system just prior to simulation.
The values in these memories can be changed during

simulation as can all data values within the system.

Fetch/Execute Cycle: Many, but not all, CHDL's have
the von Neumon cycle built into the language in such a way
that no practical way exists to avoid it. While most ap-
plication designs still perform fetch/execute within the
design structure, many others perform the fetch/execute at
more than one level and still others do not perform fetch/
execute at all, in the conventional sense. In any case,
experimental architecture experiments can hardly be per-
formed if the architecture accepted by the description
language has already been pdrfially determined. The system
presented here makes no assumptions as to architecture;
where the fetch/execute is used, the user simply provides it

in the hardware logic of the design.
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Using 2 and 4 Bit Slices: A more significant problem
is the mundane handling of multiple identical cascaded chips
while avoiding repetitive and burdensome bookkeeping on the
part of the system user. The syntax of Calsim partially
overcomes these problems. First the language represents the
logic of the machine above the gate level. Second the copy
statement allows copies to be made from descriptions while
avoiding the burdensome task of repeating the description.
The timing of these duplicates are easily modified when the
copy statement is prepared, and the wiring statement allows

the connections to be accomplished with little difficulty.

Pipelining and Concurrency: The problem of concurren-

cy in structures with a CPU, memory, and a few terminals is
fairly simple when addressed at the register level. When
this same capability is addressed using a microprogrammable
structure, the problem of concurrency becomes one of the
primary problems and if pipelining is added, the problem
becomes even more complex. The method used in this system
has already been discussed and is! in fact fairly simple.
Each time event may be used by two or more components.
Whil'e the clock is pointing to a particular value, the
operation is completed on each component but no values are
placed on the connectors to the component until all items

for that time event have completed execution. At the end of
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the time increment, if the outputs to a common wire do not
agree, then a warning message will be given by the simula-
tor. It is interesting to note that if a hardware prototype
had been under test, no such error message would have been
issued by the test egquipment monitoring the test.

In pipelining, in which data is pushed into a register
on one side while the previous signals already in the
register are being executed from the opposite side, special
effort may be needed. The user may have to set up a latch,
register or other member which may not actually exist in the
hardware itself or may actually exist but is not shown in

the manufacturers' published descriptions.
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CHAPTER III

MICROPROGRAMMING & MICROPROGRAMMING SUPPORT SYSTEMS

Historical Review

Since the introduction of the microprogramming concept
by Wilkes (107) machine instructions have been controlled by
a series of smaller steps which in turn are controlled by a
read-only memory, usually called a micromemory. The devel-
opment of LSI technology with chips containing thousands of
gates, has led to the design and production of the central
processing unit in elements of two or four bit widths, which
can then be assembled to any width desired. These
processing elements (CPEs'), called bit-slices, are being
used more extensively in Dboth application and computer
hardware as the number of gates per chip increases (20). 1In
fact the better organization possible and the higher gate
density of currently produced bipolar chips promise a change
in computer organization itself (2).

A review of recent publications, concerned with
bit-slice and other microprogrammable designs, reveals that
most of the writers discuss simulation in terms of either
specific software simulators or the use of emulators of

32
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various types (5), (22), (58), (62). The requirements for
a system to check microprogrammable hardware designs are
discussed by Fuller and others in (42) and also by Gordon
and Stallard in (46). The most popular way of checking a
design seems to be through the use of a hardware prototype
in conjuction with a logic analyzer (29), (8), (32), (65).
It is proposed to substitute a software support system using
the. Calsim language as a basis, to perform the verification

function now performed by the hardware support systems.
Uses of the Microprogrammable Concept

The case for the use of microprogramming as a far more
organized approach in the design of computers was well
established in the fifties (107) (108) (109), however it was
not until the development of the family of IBM 360's in the
early sixties that its use came to be realized in a commer-
cial sense. Through its use, IBM was able to develop a
family of machines, all of which used the same set of
assembly instructions, but varied widely in speed, - capacity
and price. In effect, the 1lower priced machines were
emulating the more expensive machines.

It had long been realized that sales of newer machines

could be severely delayed because of the user's huge

investment in software already intact and working.
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Microprogramming offered a way to overcome this problem by
allowing the newer machine not only to offer all of the
newer features but to also completely support the older
software. This is more fully discussed by Burris in (21)
and Rosin, Frieder and Eckhouse in (86).

Hewlett-Packard, among others, added to two of their
models (21 and 1000) features which allowed the wusers to
prepare and add their own instructions to thpse‘sppplied
with the machine. The memory was called a "writable Control
Store" and could be used to preparé an instruction which
could speed up execution where a time constraint problem
existed. However intriguing the idea may appear on the
surface, there is no indication that this has been a widely

used approach to problem solution.
MOS vs Bipolar Technology

By the mid 1970's it was apéarent that MOS technology
would produce a flood of microprocessor driven application
devices by the early eighties. This has certainly come to
pass. Texas Instruments, Intel, and Advanced Micro Devices
also saw the need to organize the fundamental building
blocks of the microprocessor architecture around something
other than either the complete microprocessor chip, which

limited design freedom or Medium Scale Integrated (MSI)
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chips with 10 to 50 gates. The MSI chips included such
devices as registers, latches, adders, decoders, and
multiplexers (2). All three companies chose to invest in
Bipolar technology which was at that time at least ten times
as fast as the MOS technology and used larger chips with a
different organization. To make the application hardware
versatile, bit-slice chips were introduced which allowed the
designer to vary the size of the hardware under construc-
tion. The units other than the Central Processing Element
(CPE) included special chips for selecting the next
microinstruction, priority handlers, direct memory access,
front panel control, program instruction counter and
input-output control.

The problem of testing and proving a microprogrammed
system is more complex than a conventional machine since an
additional level is involved. This means that one must test
the hardware system to assure that it will perform as
intended, but this must be done with a firmware sequence as
yet untested. The hardware emulator and prototype model
resolve this by allowing the design group to carry out tests
to assure the machine will perform as intended. Meantime if
the firmware which will actually drive the device is to be
completed, a simulator must be constructed so that written
and assembled firmware can be tested. The system presented

here allows the designer to provide a system description at
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the programming level while retaining hardware identity.
The microprogrammer can then use a copy of the description
to simulate the firmware execution. As the design develops
and the hardware designer provides additional details, the
hardware description is modified and the firmware rechecked
to assure that the defined hardware and the firmware are
still compatable.

A hierarchical design process (100) may be used by
providing only functional details in the first pass, thus
making the description quite close to the design
specification. This can be used as a test bed for firmware
(microprogram) and while it is under preparation, the hard-
ware design can be augmented with further details in a
second version of the hardware. When the firmware is

- complete and proven on the functional design, it can then be

used to check the detailed design of the hardware.

Assembly of Microcode

The problem of developing an assembler for microcode
will not be addressed here. Each design must have special
treatment for the special fields it contains and hence must
be tailored for the specific design. These problems are
discussed at length in (57). Once the microcode has been

assembled however, it is ready for the Simcal system to use.
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CHAPTER 1V

CALSIM: COMPUTER ARCHITECTURE LANGUAGE FOR SIMULATION

Project Background

In 1977 while studying bit-sliced microprocessors, Dr.
Walker suggested that there should be a way, not only to
"assemble" a set of microinstructions, as was being done by
the XMAS-CHROMIS system, but to also verify that the pro-
gram was correct. The bit-sliced instructions, unlike
machines using fixed length instructions, might be any
length and have any number of different configurations. It
was from this need to verify the microinstructions that this
project developed.

The implementation of the project started in the fall
of 1978 with a literature search, followed in the first half
of 1979 with design of the language. The top level of the
software support system was written in the fall of 1979 and
routes the user to the various environments -- the compiler,
simulator, library (to search/ edit), micromemory read-in,
main-memory read-in, table, and documentation requests. The
lexical scanner and the syntactical analyzer portions of the
compiler and several of the minor modules were completed in
the spring of 1980. Work on the semantic code generator was

completed in the summer of 1980, allowing the compiler to be
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used on a trial basis during the fall semester. Revisions,
based on input from the students, were completed the next
semester. Work on the simulator was completed during the
summer of 1981. Preparation of the dissertation extended
from August 1981 through September 1982. The grammar was

rewritten in August, 1982 and the final modifications of the

software was made during June though September 1982.

The Requirements for the Grammar

The requirements for Calsim were largely developed be-
fore the Calsim language was written the first time using
the characteristics found in other CHDL's. These were adop-
ted, extended, and modified as appropriate: Each of the
appropriate articles were also searched for descriptions of
weaknesses in other languages and suggested extensions.
These were collected and used in preparing this list of

requirements. The last significant changes to the grammar

were made as new aspects of CHDL's became apparent during

the preparation of this thesis.

1. The grammar of the language must be LALR (Look
Bhead Left Right) so that support for verification and
syntactical analysis of the grammar can be performed on

an available grammar analyzer. This assures a cohe-
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sive, more easily maintained language and a compiler/
simulator with fewer errors than ﬁse of ad hoc methods.
The superiority of compilers written using formal
methods is now well established in the area of program-
ming languages (6). The same superiority is true of

CHDL's.

2. The language must be free form to save the user the
bother of rigid formatting. The text must extend from
column 1 through column 80 using space or spaces as de-

limiters for the words of the language, just as natural

languages use spaces.

3. The language must be capable of describing a
hierarchical structure so that representation will be
similar to the hardware. This representation is to be
centered around a "system" but must also accept col-
lections of systems. The description should closely
parallel real hardware and be capable of describing

logic and storage from the bit level upward.

4. The grammar must not contain features which pre-

sume a pre-determined architecture.

5. The language must support comment insertion into
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the middle of text as well as full lines. This must be

accomplished in an easy and natural way.

6. The grammar must allow descriptions of registers,
subregisters, and cascaded registers of any practical

length and subscripted to one level if desired.

7. The language must be statement oriented making the

task of preparing the description easier for the user.

8. The grammar must provide capability to describe

parallel operations so-simulation is realistic.

9. The grammar must provide timiﬁg ability so that the
asynchronous operations and interrupts can be simulated
to the level of user interest. The timing must allow
the logic to repeat operations until the specified con-
ditions are fulfilled thus duplicating a "HOLD" con-

dition in the hardware.

10. There must Dbe provision to use micromemory, main
memory, and at least three auxiliary memories copied

from external files.

11. The system must provide capability to develop data
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to fill the memory files separately and provisions to
"read" the data into the system when the file is com-

plete either before or during simulation.

12. The language must provide special features for
ports (terminals) so that data passing through the
terminal will be converted to ASCII as received at the

terminal and from ASCII as sent from the terminal.

13. The grammar must support entries to and retrieval
of descriptions from a library. The copy ability must
include provisions to store complete descriptions
during compilation and to retrieve the description
during that compilation or a subsequent compilation.
The library must be accessable for 1listings and
searches of the contents from an area of the software
other than the compiler itself. The time events stored
in the compénent description must also be adjusted at

the same time the item is copied, using the content of

the copy command to determine the new event times.

e

14. The grammar must provide for entry of multiple
components of the same type with minimum difficulty.
The use of multiple components in bit-sliced and

conventional microprocessors require that this be done
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to reduce the time used for multiple entries.

15. The grammar must provide for logic description in
a way most likely to be in the language of the user,

such as found in Fortran, Algol, or PL/I.

16. The language must provide for connectors and sets
of connectors between the components so that output
from one component may be either held or transferred to

another component in a manner similar to hardware.

17. The language must provide for a start condition.
This will consist of a way to set wires, registers,

pins, and memories to specified values so the device

can begin execution.

18. Language construction which allows the compiler to
perform work which in fact must be done in hardware

must be avoided or be made apparent to the user.

The Grammar -- Development

The grammar for the Calsim language is LALR (look
ahead left right) and was developed using a grammar analyzer

by Lalonde (63) which resides on the UTA IBM-4341. The
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Lalonde analyzer verifies the grammar as meeting the re-~
quirements of an LALR (K=1) grammar and produces tables
which control the execution of the syntax analyzer.

The constuction of the grammar itself, 1is somtimes
better understood by 1looking at the language examples.
These may be found in abundance in Appendix 3 of the User's
Manual (Appendix 6). The Backus Normal Form productions
(BNF) are shown in their entirety in Appendix 3.

The special output (grammar and tables only) from the
Lalonde analyzer were transferred to the DEC-20 using a
link provided by the UTA Computing services and *cleaned"
with a special piece of software called "TRAPLINK" which is
part of the UTA Computer Center Utilities. Several
formatting steps were performed on the output file from the
analyzer to make it compa;able with the Simcal software
system as written. These steps include elimination of
"page" lines, comments, leading spaces, a ' START-STATE
LITERALLY ...' statement and change of the null character in
the vocabulary list to a space. A line with "END OF BNF"
starting in column 1 was added between the grammar listing
and the driver tables. The 1lines in the tables which
declare table size were moved up, keeping*®the same order, to
a point just above the vocabulary listing enabling all of
the table sizes to be read by the Simcal system at one time.

The Lalonde analyzer numbers the files from zero, but Cobol
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requires files to Dbegin at one, hence the table limit and
the index value is increased by one in the support software.
The "END OF BNF" marker separates the productions
(which may be requested by the system user) and the tables
which actually drive the syntax analyzer. By transferring a
single file from the grammar analyzer with only the modifi-
cations listed above, added assurance is provided that the
displayed 1list of productions will not be a different ver-
sion from the tables which actually perform the compilation.
Th? transferred tables perform the following functions:
1. Control the execution of the syntax analyzer.
2. Provide the structure for the semantic generator.
3.- Provide a listing of the‘BNF productions.
4. Support a set of software tools built into the Sim-
cal system for program development and debugging.
The routines have been left in place but cannot be

"Turned on" unless a keyword is entered.

The Grammar -- Structure

The grammar requires a system name at the beginning of

the hardware description, followed by a series of state-

ments. At the end of the system description, an end state-
ment is used and may be followed by other system descrip-

tions. The last card is "END OF DESCRIPTIONS" card. Each
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system described will start with the items which are to be
stored in the library, followed by the timing and hierarchy
statements beginning with the top level. The descriptions
of the connectors, memories, input-output devices and other
components are then entered. The last statements to be
entered should be the wiring statement, which provides the
connections between the components, and the start statement
which provides the conditions for initialization of the
machine action. The reader is referred to chapter 3 of the
Calsim/Simcal User's Manual (Appendix 6) which contains

detailed instructions for each of the Calsim statements with

examples of syntax.
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CHAPTER V

SIMCAL: THE SOFTWARE COMPILER/SIMULATOR SYSTEM
The Requirements for the Support System

Most publications which discuss CHDL's say little
concerning the software support system which actually does
the work of compilation and simulation. 1In the fifty or so
papers in the list of references which discuss CHDL's, there
is little material on the construction of the software
compiler or simulator. Hemming and Hemphill (51) develop a
case for a specialized simulator as opposed to the more gen-—
eral simulators such as GPSS, SIMSCRIPT or GASP. The
requirements for the support system were developed not only
from discussions in those publications, but also from
experience with interactive systems and from checking proto-
types using instrumentation of various types. -Personal use
of the DEC-20, IBM-4341, PDP-11, INTEL 8080 and Zilog Z-80

development systems also contributed to the development of

the requirements list.

The objective of the support system is to provide an
easy to use package which supports the user in a friendly
and natural way. It is probable, with the wide spread use

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyw\w.manaraa.com



47
of small home computers, and the ease with which they can be
operated, future user acceptance will be seriously 1limited
for software not meeting high standards. The requirements

list for the software system follows.

1. Provide a series of environments which match the

various functions the software will provide.

2. Provide "?" in each environment so that the user

can immediately determine the commands available.

3. Provide "HELP" in each environment so the user can
find immediately the function of the particular

module.

4. Make sure all responses provided by the software

are friendly, useful, and clear.

5. Eliminate all responses which show "Do not under-
stand" type answer when it is possible to make a

reasonable assumption and continue the processing.

6. Provide an entry level message to assist those not

familiar with the system.
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7. Provide documentation of the system from within the
system itself. Provide printing on a line printer

for the User's Manual.

8. Build the compiler to print local messages (at

point of error) which are clear, concise, and

complete.

9, Build the compiler to output tables to drive the
simulator and also provide the user with a tabular

description of the object machine.

10. Format the tabular description for easy reading

and to assist in discovering discrepencies.

11. Provide for at least three (3) data files which
can be read into the executing machine or will re-

ceive data from the executing machine.

12. Provide library support to interact during compi-

lation to accept and retrieve descriptions.
13. Provide the means to "COPY" multiple copies and

at the same time change each timing for each copy

as required.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com



49
14. Prepare a simulation driver which allows the user

to perform a wide variety of functions including:

* get values of pins, registers, memories, wires.

* pisplay logical values of each hardware item.

* get locations of break points in a table.

* provide means to build menus of display items.

* Set a time loop for execution repetition.

* Execute in a "Run-to-break" fashion.

* Execute a specified number of steps.

* Execute one step at a time.

* Set a trace which shows execution sequence.

* gSave trace on a history file.

* Allow the user to "Tie" a port to a file so that
incoming data comes from a file or output is

collected onto a file.

15. Construct the simulation driver using LALR (k=1)

grammar and the LALR syntax analyzer.

16. Construct a simulator which directly executes the
user logic’ ﬁsing a timing system to control the
sequence of executions to support interrupts, con-

current operations and asynchonous communication.
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17. Provide support to search the library and print an
index, a description, or all of the descriptions

and also copy from the library to the compiler.

Construction of the Software System

The software was developed on the DEC-20 using Cobol
as the source language. The system is well modularized and
contains about 8500 1lines of code including the embedded
documentation. The code follows the standard practice of
most Cobol users - meaningful names for data items and para-
graphs; modularization; careful attention to alignment of
IF/ELSE, PIC, 1level numbers and other items; use of .
indentations and skipped lines; restricted use of "GO TO";
verification of numerics at entry time; and comments where
there may be doubt as to the function being performed or the
method being used to achieve that function. The
construction of the program follows that advocated by
Armstrong (9) - decomposition of the program into
successively smaller modules through the use of the perform

statement.

. The user enters the system at the "ENTRY" level and is
then able to go to any of the twelve major areas of the”
program. Each of these areas comprise a major module and

contain commands of their own and explanations of the
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functions perfofmed in the area. The reader is referred to
the CALSIM/SIMCAL USER'S MANUAL found in Appendix 6 for a
full explanation of the software system from the user's
viewpoint. The discussion here will be restricted to the

'more interesting features of construction in several of the
major modules.
Entry Loop: The entry loop provides an entry message

which explains the system to those unfamiliar with Simcal.

It's primary function is to route the user to the various
areas of the software support system as requested.

Compiler: The compiler contains five (5) significant
sections -- (1) the pre-compiler, (2) lexical scanner, (3)
syntax analyzer, (4) semantic code generator and (5) post-
compiler. By far the most significant in terms of effort is
the semantic code generator. The pre-compiler reads the
grammar tables for storage and querries the user for certain
information. The lexical scanner selects the next word or
character from the incoming hardware description, determines
its position in the LALR vocabulary, then passes both
position and word to the syntax analyzer. The syntax -
analyzer follows the standard algorithm for LALR grammars by
checking the correctness of the syntax, and 1f correct
either requesting the next token from the scanner or calling
the semantic code generator to write the output for the

correct production. If not correct, an error message is
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written and a recovery routine executed. The post-compiler
performs several cleanup functions on the collected files.
Library Construction: The library is constructed
using a single sequential file and two working files. When
the the compiler submits an item for entry, the table is
accessed, and if the item is not present, the description is
stored on working file 1. If the entry fails, it is so
noted in a key and processing is stopped. If the entry is
satisfactéry, tﬁe item is merged with the master file.
Copying is accomplished by locating the item in the master
file and making one or more copies modifying the names as
required. The file is closed and re-opened and a key causes

the temporary file to be read instead of the incoming hard-

ware file.

The library is also accessed from a "LIB" environment
here the user requests an index, a particular listing, a
full 1listing, or a deletion. In these cases the file is
opened and the desired item or items are printed or deleted
if found otherwise a "Not found" message is printed.

Simulator Driver: On~entering the simulator driver,
the software reads the syntax tables for both the simulator
driver and the simulator and provides the user with a prompt
for a simulation command. The User's Manual contains com-
plete instructions for use of the simulator and a listing of

the key words which can be used as commands. The driver
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accepts a command string on a carriage return entry,
analyzes the string for correct syntax and sets the proper
flags or takes other action as required. If the command is
an execution command, control is passed to the simulator
otherwise the driver takes action.

Simulator: The simulator, like the compiler and simu-
lator driver also uses LALR grammar. The grammar was copied
directly from the ﬁtatements of ”CALSIM grammar containing
logical operations, however compressed character represen-
tation is used for the simulator grammar. When control is
passed to the simulator, it sets a counter at one and starts
a count each time a set of execution statements is accessed.
This is compared to the upper limit which was set in the
simulator driver to no more than 500 steps. The operations
are then carried out according to the event table starting
with the current time.

Programmer Support: Programmer support is provided
throughout the program by comments and working modules which
have been left in place. These are inactive unless the
programmers key is set at a particular place-in the program
by entry of the proper password. Explanations to the
programmer for the use of these displays are contained in
the program listing; Typical of these are the following:

1. A printout of the BNF production each time a reduc-

tion occurs.
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2. A display of a set of variables connected with syn-
tax analysis each time a token is sent from the

scanner to the syntax analyzer.

3. Display of a trace through the four major sections
of the syntax analyzer including a display of the

token being processed.
The software support system - implementation

The DEC-20 at UTA was chosen over the IBM-4341 because
of its greater interactive capability. The only languages
available on the DEC-20 were Fortran, Cobol, Basic, and an
unsupported version of Pascal. Pascal was eliminated Dbe-
cause of the lack of adequate documentation and lack of
portability. Basic seemed to lack adequate strength for the
task. Finally a careful comparison of Fortran vs. Cobol
was made for the task at han&. Although Cobol is considered
a "Business" language and Fortran a "Scientific" language,
the features of the two are similar in many respects e.g.

. . computations look the same in both languages except for the
word "Compute" in Cobol and will be carried out the same way

given that the same data type is used.

An examination showed there would be many routines to

support the interaction between the computer and the user, a
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significant amount of character manipulation in the three
scanners and syntactical analyzers, a multitude of tables to
be read, constructed and displayed, and fifteen files to be
processed. The only area where time would become critical
was in the simulator where routines would be repetitive.
Since ‘“computations" would involve bit level manipulation,

it was necessary that data movement be as fast as possible.

The comparison of the two languages follow.

FORTRAN COBOL

Functions and passing

data between modules excellent poor
Manipulating bytes poor excellent
Data structuring ‘fair excellent
User interface commands good excellent
Searches fair excellent
Data editing, checking poor excellent
Report preparation good excellent

Cobol seemed to be the stronger of the two languages

for this application and was chosen over Fortran.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com



CHAPTER VI

A PROPOSAL FOR USE IN TEACHING COMPUTER SCIENCE

The Proposal

By the time a Computer Science student is introduced
to a CHDL, usually in a first course in Computer Organiza-
tion, he is already familiar with some of the aspects of
computer components and architecture. He is aware of the
function of registers, CPU, memories, the ALU, and control
portions of the CPU. He may also have extensive information
beyond this from personal study, other courses or use of
home computers.

One of the problems at this stage is to give the stud-
ent a means to communicate so that he can be sure of both
understanding and being understood. Chu introduces CDL in
(25) in chapter 1 and uses it throughout the text to
describe the components and suggests its use by the student
to work the exercises. His emphasis is on using CDL as a

means of communication and as a symbology useful in study of

¢
®

logical design as does Posch in (82).
The use of a CHDL to bring uniformity and understand-
ing to computer design is quite similar to the use of a high

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com



57

level language, such as Fortran, to teach algorithmic pro-
cesses. Without the programming language, a symbology of
some kind must be used, and it is likely each person will
use their own variation of the specified symbology. Fortran
brings order - the compiler requires that every description
meet requirements, unfailingly detecting all errors. It is
well recognized that programming greatly increases ones
ability to understand algorithmic processes, primarily, some
might say, because one is forced to "Do it over and over and
over again until he gets it right".

In the study of computer organization, simple hardware
design exercises may be checked in a laboratory in which ob-
served results are recorded and later placed in a report.
More 1likely, the exercises are not verified through the use
of hardware at all, but handed in as homework or quizzes
after deskchecking. The instructor then reviews and grades
this work and the student must wait for the feedback. I
propose to use Calsim and its simulator in exactly the same
way that the Fortran and it's compiler are used to allow the
student to detect and correct the errors, make the repairs
and try again. This rapid feedback, certainty of error
detection, and freedom to experiment using a tireless
machine, all contribute to the learning process. It also

frees the teacher from significant amounts of grading

without sacrificing his ability to verify that the concept
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has been grasped or needs attention.

Many of the CHDL's described in Appendix 2, were writ-
ten in universities and were at least partly intended for
student use. Some of the languages have been included in
textbooks (25). APL, which has been proposed as a language
to describe hardware and software with equal ability, is
widely known and available as are Chu's CDL and Hill's CHDL.
At some universities the CHDL's have been used extensively
for several years. A course at Stanford is described by
vanCleemput in (10l). Yet a search of the current journals
shows a limited interest in the use of CHDL's as a tool in
teaching Computer Science (7), (60), (82), (92). Tomek (99)

states as the reason for this:

(1) The CHDL's are professional designer oriented.
(2) Inexpensive portable models are not available.

(3) There are no text books covering the material.

Calsim has been designed to overcome these problems.

First the language itself is easy to learn because of it's

close relationship to English, its statement orientation,
and its meaningful error messages. Second, the support
system (SIMCAL) is a friendly, interactive system with

"guideposts" at each "corner" to keep one from getting lost

or discouraged, leaving the student free to concentrate on
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work content, not the mechanics of the system. Third, the
User's Manual is complete and easy for the student to use.
It is produced in it's entirety in Appendix 6 and contains
examples over all levels of hardware study. FoufthA the
system is written in a widely available, easily modified,
high level language (Cobol) allowing easy movement from one
facility to another.

In the use of the system, £he student is free to use
designs completely his own or the examples from the User's
Manual. Each of the examples include a diagram of the
hardware, a Calsim 1listing, and an explanation of the
operation of the unit. Machine copies are available to the
student, precluding the use of valuable time reentering the
descriptions. The system will support a wide variety of
designs over several levels. At the beginning of a Computer
Organization course, flip-flop descriptions are available
for use by the instructor with the student simulating the
operation, saving a printout of the action; or the student
may be required to modify the descriptions and show the
simulation. The description of adders, shift registers,
multiplexers, and parts of the ALU are available in
subsequent examples.

At a more advanced level, a complete machine using
microprogrammable component parts may be prepared by the

student. An alternate approach is to use completed designs

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionWWW manaraa.com



60

and require the student to make modifications. The student
then uses the simulator to observe the changing values to
prove his design. At a still more advanced level, the stu-~
dent can be required to design a complete hardware/firmware
system using microprogrammable bit-sliced components. Using
the system, the student is able to see graphically how the
microprogramming works and prove both the hardware and firm-

ware designs. Trade-off studies between firmware and

hardware can be performed also.

Introduction to Calsim in Computer Organization

Use of the system would start with the first course in
computer hardware organization iﬁ which the student uses the
simulator on a series of simple circuits -- flip-flops,
adders, shift registers, latches, multiplexers, etc. These
laboratory assignments would require the student to simulate
these devices which have already been written and are avail-
able from the system. The exercises would include simulation
using several different inputs, modifications, and exten-

sions of the design. The results of the exercise could be
printed directly at the terminal ready to be turned in. The
examples shown in the Appendix of the Calsim User's Manual
(Appendix 6) could be used as assignments.

After several exercises, the student would be somewhat
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familiar with both hardware and Calsim and could be
introduced to the more complex structures of the language.
. The examples found in the Appendix of the User's manual
contains descriptions of program control units, input-output
devices, and ALU circuits. Each e#ample contains a hardware
description, the Calsim code, and a Dblock diagram of the
unit. In most cases the design presented is already
available on the machine saving the user the bother of
reentering. By the end of the course the student will be
able to describe computer hardware, compile, simulate and

check out system designs. The graduate students could be

assigned more complex projects.

Use in The Study of CPU's and Microprocessors

In a microprocessor course, several different chips
are usually introduced and the student is expected to do
programming in at least one of the assembly languages of the
chiés. This may be done batch wise or in some cases using a
development system from the chip manufacturer. In the last
few years development systems have become available which
will do any chip set if the ROM for that set is purchased.
The Calsim/ Simcal system meets this requirement in the same
way. The instructor would need to prepare a description of

the target chip and a "terminal" description in Calsim. The
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hardware description would include the CPU chip, the 1I-0O
chip, a bus and a "designers" terminal to make communication
with the simulator easier. This would be available to the
students who would then prepare program code using an
available assembler. The code would then be read into the
Simcal system aléng with the machine description and the

chip would be ready to interactively simulate execution.
Use in the Study of Microprogramming

Examples five (5) through eight (8) in the Appendix of
the User's Manual provide approaches to introduce the
student to microprogramming. The examples include a de-
scription of the AMD-2901 CPE, the AMD-2909 sequencer (2),
and the AMD-2900 learning kit (3). The learning kit was
designed by Advanced Micro Devices to introduce those in the
field not familiar with microprogramming to some of the
principles of controlling execution through firmware rather
than hardware using AMD-2900 components. The example does
not attempt to replace the kit manual, which must be studied
and used along with the example.

A second approach to introduction of microprogramming
is presented in example seven (7). This approach uses a
small microprogrammed computer représenting no machine in

particular, called MIC (Microprogammable Instruction compu-
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ter). The machine is meant to perform a useful function and

generally works at a higher level than that in the learning

kit, which is primarily at bit level.
Use in Application Program Design Studies

The typical course in design studies includes one or
more projects in which the student will solve a functional
problem Dby selection and integration of several components.
The student may have the opportunity to try the design in
hardware, but more likely it will be only a paper design.
It is well recognized that production of a prototype, how-
ever desirable, cannot usually be done because of time, cost
of the components and lack of skill to assemble the proto-
type. The student, of course, never has the opportunity to
see the defects in his design or the problems which would be
uncovered if the prototype was built. The work many times
is at a level which blurrs the details of how the interfaces
are accomplished. The use of Calsim is a natural step
toward the same goal and accomplishes well over half the

benefit of a prototype with far less investment by either

the student or the university.
For this purpose, the instructor would use a library
of chip descriptions. The student would use the library to

build his system much as he would if actual hardware chips
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were used for a prototype. In some cases the instructor

might have the student add items to the library.

Class Experience with Calsim

The language and the compiler/simulator were used and
evaluated by a group of seventeen (17) graduate students in
an introductory computer organization course at UTA in the
fall semester of 1980. The students, all of whom had under-
graduate degrees. in fields other than Computer Science, had
completed six to twelve hours of graduate Computer Science
prior to taking the course. By mid-semester, the students
had covered operations, number systems, Boolean algebra,
gate networks, and elementary logical designs.

For the mid-semester (take-home) examination, students
received a microcomputer design with some fifteen explicitly
.ired components along with a detailed explanation of the
action of each component. The students were required to
design several of the units using gates, e.g. a unit was
shown which could select the next micromemory address from a
ROM, the pipeline register, or the microprogram counter.
The students were required to design a selector switch which
would place the correct value on the output pins of the unit

based on the input from three control lines.

The term project, assigned during the second week of
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the semester, required the students to choose a microcomput-
er and to develop a block diagram using the components.
They were then to describe in the CALSIM language the hard-
.are represented by the block diagram and to process the

description through the compiler. Finally, critiques of the

CALSIM language, the compiler/simulator and their use as
teaching tools were required. To encourage the search for
defects in the Calsim/Simcal system, extra points were given
for each Software Trouble Report.

Several 30 minute lectures on the CALSIM grammar, lan-

guage and compiler/simulator were given during the third

quarter of the semester. The students were permitted to
work individually or in groups; a total of eleven reports
were received. Student program lengths varied from 95 to
over 1000 lines of code. The components numbered from 12 to
20. The response to the language and grammar indicated that

both were easy to learn and use. This was confirmed by the

relatively long error-free programs.
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CONCLUSIONS AND POSSIBLE EXTENSIONS
Possible extensions to the work seem to lie in three areas -

(1) Testing of the system to discover omissions, errors
and areas requiring improvement.

(2) Expansion of the software system to provide new
and improved capability.

(3) Application of the methodology to other Specialized

Description Languages (SDL).

System Testing

A system has been presented which proposes to go Dbe-
yond the capability of the current CHDL's. Potentially it
offers not only a language but also the necessary support to
provide a viable learning environment over the full span of
Computer Science education. Significant testing, however

remains to be done in the following areas. -

(1) An independent party needs to compare all of the
requirements, as detailed in chapters IV and V, to
to the actual delivered product. This should be

66
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done by preparing a test plan that checks each

item for inclusion and performance.

(2) The system needs to be used at the beginning level
(Computer Organization) for at least two semesters
using feedback from the student to correct system

deficiencies.

(3) The system needs to be used by a group of students
studying microprocessors the first time to deter-
mine changes needed for chips such as -Zilog 8000,

Intel 8085 or similar microprocessor chips.

(4) A group of advanced graduate students in a special
seminar course could develop the descriptions of
many of the components needed in the other courses
and could also provide valuable critiques.

(5) Use by a group of students for microprogramming
only, the instructor providing a proven "hardware"

system.
Software System Expansion

Several software modules could be prepared which would

complement and -extend the system. These are listed below.
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(1) An interactive module to accept hardware descrip-
tions from the user. This would be of assistance

to the beginner as it would prompt him for input.

(2) A general purpose microassembler configured with
special input for one of the bit-sliced chips (of
various configuration), such as those manufactured

by Advanced Micro Devices and Texas Instruments. .

(3) A graphic output module which plots the item under
study. The current availability of pinprinters
.ill make this feasable in the near future.

(4) A module to produce a parts list.

(5) A program to read an execution module from an

assembler package and prepare it for Simcal entry.

(6) An expansion of the software allowing the user to

save the status from one session to the next.
Applications of the Methodology to Other Areas

In addition to presenting a CHDL and its support sys-

tem, the technique used to build the system has also been
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described. The method consists of several major steps, each
subdivided into smaller steps. The method could also be
applicable toward developing other Specialized Description
Languages (SDL) where either programming or general purpose
simulation languages are now used. The Encyclopedia of
Computer Science, page 1265, (85) estimates that 75 % of all
simulation is AOne in Fortran and most of the remainder 1is
in GPSS, Simscript or Simula although eleven other general

simulation languages are discussed.

Simulation is widely used to study various systems
such as job shop manufacturing, weather, economics, and

materials handling. The value of a specialized description

language to study an operation has been clearly demonstrated

in the case of the CHDL's. The CHDL's perform their
specialized function better than either general purpose
simulation or programming languages. The advantages of the

SDL as a "tool" over the general purpose "tool" include:

(1) Closer Representation of the Model.
(2) Less Time to Prepare the Description.

(3) Broader Use During Simulation.

These advantages are offset by the investment in build-
ing the system and the time the user must spend in 1learning

to use the system. We now examine the steps taken in the
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methodology, attempting to state the steps in a general
language which would fit any attempt to build a specialized

description language and it's software support system.

(1) Identify the basic units of the system under study.
(2) Develop the BNF statements to fit these units.

(3) Develop the BNF subunits' clauses.

(4) Prove the language using a grammar analyzér.

(5) Prepare and prove the syntax analyzer.

(6) Construct the semantic portion of the compiler.
(7) Prepare a tabular output from the compiler.

(8) Write a user interface language for the simulator.
(9) Write the table driven simulator.

(10) Prove the system and make changes as required.
(11) Prepare user documentation.

(12) "Sell" the system to a group of users.

We now examine the pfoblems of using such concept to
develop a specialized language. A manufacturing simulation
system is chosen for an example because it has received
significant attention for at least ten years and continues
to receive attentions as interest in CAD/CAM (Computer Aided
Design/ Computer Aided Manufacturing) continues. The ideas
presented here are strictly superficial and in no way

represent a study of the languages used for simulation of
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manufacturing processes. It is presented to illustrate that
the methodology used to develop the Calsim/Simcal system
could be used for other types of simulation and to draw the
analogy between the CHDL, Calsim and an SDL in another area.

Let us consider a manufacturing system to be any set
of facilities, capital, and personnel which can receive raw
material, parts, and/or assemblies (input) and produce one
or more end items (output). We will assume several systems

may interact with each other or the system under description

may be divided into lower level items until reaching areas
such as "detail shop", "major assembly", "foundry", "Plant
A" or other organizational segment. These may then be
carried to lower and 1lower levels as desired. These
descriptions are obviously analgous to the hierarchy
statement used in Calsim and represent the organization of

the manufacturing operation.

In a manufactuing system, the details, assemblies,
supplies, and raw material must be moved from one location
to another using one or mére of numerous types of transport-
ation systems. Such systems are functionally the same as
connectors in an electical circuit. The manufacturing
system, however, moves more than two types of articles
through the connectors, whereas a CHDL has only "ones" and
"yzeros" to move; this hints at the greater complexity of a

manufacturing system as compared to a computer system.
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We must now provide a grammar to describe the trans-
portation system. This might be done with a series of
clauses including such items as "TYPE" (conveyor, flat-bed
in-plant truck, special trailer, and dozens of others). We
would probably wish to have other characteristics identified
such as capacity, speed, loading and unloading time. When
all of these significant parameters which affect the
operation are identified, then appropriate‘ clauses can be
made a part of the grammar.

If our generalization is to hold, we should be able to
find something in the manufacturing world, which is similar
to a register, and indeed we do. It is the backlog of work
awaiting processing and the completed work awaiting shipment
to the next step. More correctly the work-in-process is
analgous to the "data", the storage area is analgous to a
register or latch. So at the unit level, we must have some
arrangement for storage. Like a register its size is most
important. But in manufacturing, storage bins are more
complex due to the variety of things to store.

One of the most important factors in the manufacturing
system, as in a computer system is the operations to be per-
formed. The operation may be milling, drilling, routing,
assembling, painting, inspecting, etc. As with computers,
only certain operations are performed on certain materials

and the grammar/language must recognize this. Other items
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of interest are the special tooling needed, the skills
- required, personnel, and the supplies which are necessary.

Manufactuing will usually be carried out to prepared
work instructions. This will include manufacturing planning
"ﬁich calls out the operations needed to make the end item,
usually specifying the sp=cial tools needed, the material
needed, the sequence of steps to follow, and the location
where the operaéions are to be done. It is easy to see that
the manufacturing- work instructions are analgous £o a
computer program to be run in a computer system.

The analogy to a microprogram is found within the
manufacturing unit itself -- .the detail procedures for
specific operations. The specific operator instructions of
various types including those which tﬁe operator has
memorized, machine instructions, and detailed methods of
performing skills such as soldering, welding, or plating.

The analogy will not be carried any farther. It can
be seen there are many analgous situations and also that the
manufacturing system is actually far more complex than a
computer system. In closing the comparison, some of the
possible items of interest in a manufacturing simulation
system are shown. In each of these cases the study may be
applied to future systems, a major change 1in a present

system, or problem solving in a current system.

3
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(1) Optimization of work-in-process inventory.

(2) Trade off studies of various combinations of
machines, manning, work-in-process.

(3) Various approaches to materials transportation
movement, and storage.

(4) Effect of various rejection rates on schedule,
cost, and required work-in-process.

(5) Optimizatioﬁ of inspection effort.

(6) Determination of critical points affected by an
increased schedule rate. |

(7) Determination of the proper time to reduce manning
level given a reduced schedule.

(8) Effect of worn equipment and increased maintenance
on cost, schedule, and rejection rate.

(9) Optiﬁization of maintainance expenditures.

(10) The effect bargaining unit rules on productivity.

(11) Determination of return on investment (ROI) under
various conditions.

(12) Effect of change in interest rate on planned

facilitization.

The similarity of the trial manufacturing grammar in
appendix 5 to that of Calsim in appendix 3 is easily seen.
The system name, the descriptive hierarchy, the several

types of statements and the clauses which further describe
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’

the portion being studied all have similar structure.

Summary

A hardware description language has been presented
specifically designed for use by students in the first
course in hardware organization and in several other course
including those using microprogramming. The grammar 1is
sufficiently English like to make the language easy to learn
and use. The system lends itself to the study of micro-

programming and to hierarchic Aesign studies.

In addition to presenting "Yet another” Computer
Hardware Description Language, a methodology for developing
the language and simulator has been presented. Many of the
ideas, grammar, techniques, methods used in the language it-
self have been used by others. The best from several of the
languages have been combined, reorganized and rearranged to
give a unigue language. The methodology used, however, as
far as can be determined has not been reported before. The

application of the methodolgy to other areas of simulation

may be of greater significance than the language itself.
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APPENDIX 2
SUMMARY OF COMPUTER HARDWARE DESCRIPTION LANGUAGES

EXPLANATION OF APPENDIX. The brief explanations of
the CHDL'S presented here attempt to emphasize the same as-
pects which the author of the articles referenced empha-
sized. In most cases there is a "PURPOSE", which states the
reason the originator had in creating another CHDL. If this
is omitted it is because there was no clear indication of

. the purpose of the language over those already available.
When the "DISCUSSION" is omitted it is because there was
insufficient information. See page 15, "An overview of
CHDL's" for a discussion of these entries.

ADLIB (A Design Language for Indicating Behavior) by
Dwight D. Hill, 1979, (52).

PURPOSE: To describe the timing and behavior of sever-
al interconnected computer components, which are then com-
bined and "connected" by a simulator called SABLE (Structure
and Behavior Linking Environment) and used in conjunction
with SDL (Structure Design Language).

DISCUSSION: A behavior language using a superset of
PASCAL with six special types of statements added to the
set. Used in combination with SDL, SABLE, and SUDS2 (A
graphical structure editor). The special types are:

(1) ASSIGN <EXPR> TO <NET NAME> <TIMING CLAUSE>
(2) WAITFOR <BOOLEAN EXPR> <CONTROL CLAUSE>

(3) SENSITIZE; DESENSITIZE; DETACH

(4) UPON <BOOLEAN EXPR> <CHECK LIST> DO <START>
(5) TRANSMIT <EXPR> TO <NET> <TIMING CLAUSE>
(6) INHIBIT and PERMIT

ADL. (An Architectural Description Language) by C. K.
C. Leung, 1979, (67).

PURPOSE: To complement many existing CHDL's in the
area of packet switching communication system descriptions.

DISCUSSION: Designed for use in documentation, de-

sign, and language interface in a design automation system.
"A~ packet communication system consists of hardware modules

which communicate only by sending information packets to
each other. ADL provides a language to describe these inter-

79
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connections". Examples of ADL follow.

TYPE ALP = MODULE
INLET OPN-IN: OPN-PKT;
OUTLET RES-OUT: RESULT-PKT:
PAREM N-OF-ALU: INTEGER:;
SUBMOD
K: CONTROLLER(N-OF-ALU)
INLET OPN-IN: OPN-PKT;
ALU-IN[1l...N-OF-ALU] ALU-RES;
OUTLET RES-OUT: RESULT PKT:
ALU-0OUT[...M=OF-ALU]: ALU-~OPN;
END

AHPL I, II, III (A Hardware Programming Language), by
F. J. Hill and G. R. Peterson, 1973, (53), (55), (54), (26).

PURPOSE: Extends the syntax of APL to include parallel
and asynchronous operations. Specifically recognizes the
control section and register section of the CPU.

DISCUSSION: Developed at the University of Arizona
primarily to assist in the synthesis of electrical circuits
from hardware design. The language follows the 'same
philosophy as APL with additional features of the language
allowing a rapid register transfer description to be

- accomplished. This is one of the most widely used CHDL's.

APDL (Algorithmic Processor Design Language) by John
A. Darringer, 1968, (31), (96).

PURPOSE: To describe the behavior of digital, synchro-
nous systems and to "Enable the designer to conveniently
describe any part of a processor as an algorithm".

DISCUSSION: An extension of Algol which includes reg-
ister data types, register computations, time blocks for
delay, parallel operations. It can be used at several
levels down to the gate level. "APDL. has been used for
several semesters at Carnegie-Mellon University for both
instruction and course projects and proved to be convenient
notation for describing existing hardware". Examples of the

language follow.

BINARY REGISTER ACC<0:3>
BINARY REGISTER ARRAY MEMORY [1:NOPAGES,1:128] <1:31>;

BINARY REGISTER PROCEDURE SHIFTON (A) <1:31>;
VALUE A; INTEGER A;

3TIME BEGIN

AM <- AM + XM

OV <- OVERFLOW
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END
IF EVER MB = CORE (N) THEN 3TIME BEGIN

END

APL (A Programming Language) K. E. Iverson, 1962,
(96), (45).

: PURPOSE: To provide a programming language which will
Address operators in a uniform way and be capable of de-
scribing the hardware and software logic equally well.

DISCUSSION: The language 1is interactive and uses an
interpreter to process one line at a time. Processing is
from right to left. There is an extensive set of operators,
virtually all of those used in mathematics, but many are

unsuitable for hardware descriptions. A special keyboard
and printer is used which redefines the upper case letters:
the lower case letters are redefined as capitals. The

ability to reach the bit 1level and to manipulate values
allows the full set of functions in a CPU to be compressed
into a few hundred lines. In simulation, a single line of
code will usually simulate a single machine instruction.
This language is broadly used and widely available as a time
sharing system. It has not been found entirely suitable for
hardware descriptions due to its deficiencies in timing and

sequencing control.

APL*DS (A Programming Language for Design and Simula-
tion), W. R. Franta and W. K. Giloi, 1975, (41).

PURPOSE: To provide an interactive, top down, step-
wise, refinement system which can address real-world prob-
lems, "not just the 1limited problems for which CHDL's are
usually suitable"”. .

DISCUSSION: A procedural language and system somewhat
like APL. The statements include: transfer, declaration,
branch, process directive, assignment, and indexing. The
language uses, as do many CHDL's, the convention that each
program line is a time segment. The system uses a pre-
processor which translates the description into APL which

then simulates the machine action.

ASM (Algorithmic State Language) by C. R. Clare, 1972,

(33).

DISCUSSION: Developed and used by Hewlett-Packard in
Great Britian. An ASM description is a sequential machine
realizing a particular algorithm. The operations of the
target system are expanded on a flow chart and the
description is realized as a sequential machine.
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CALSIM (Computer Architectural Language for Simula-
tion), by W. A. Skelton, 1981, (92).

PURPOSE: To directly address the problem of descrip-
tion and simulation of microprogrammable bit-sliced hardware
in an English like interactive CHDL suitable for Computer
Science education.

DISCUSSION: A hierarchical, non-procedural language
implemented on the DEC-20 suitable for register-transfer,
programming, and system level studies. The LSI chips and
buses are considered the elementary units and are used to
make up the larger aggegate of components. The language and
simulator address timing and concurrency by use of an eight
level event clock. See the Appendix of the User's Manual
for examples of the language.

CASD, (Computer Aided System Design), by E.D. Crocket,
et.al., Reported under development in 1969, (30), (96).

PURPOSE: A complete set of software packages to assist
computer designers.

DISCUSSION: D velgged at IBM facilities at LoOs_Gatos,
Ca., and based on PL/I with several additions an deletions

to the language. The user specifies the register, sub-
register and memories. The flow of control is implicitly
defined by the order of instructions. The user has a choice
of five major facilities: (1) the CASD language compiler,
(2) the simulator, (3) detail logic generator, (4) on-line

changes in conversational mode, and (5) documentation. "The
basic unit for describing what is to be done to the data
items is the expression, defined as in PL/I". "The basic

statement types for describing action on data items are
ASSIGNMENT, WAIT, CALL, GO TO, IF, DO, and RETURN" .

CASL (Computer Architecture Specification Language),
by G. F. Maxey, 1979, (74).

PURPOSE: To assist design architects in experimenting
with new designs "As easily as programming language design-
ers now experiment with language functions" by automating
system design.

DISCUSSION: A register transfer language for system
architects allowing decomposition of a machine into co-

' operating asynchronous modules, each of which contains
"Abstractions", "Structural" and "Procedural" sections. The
abstraction section may be used to define the data represen-
tation and primitive operators. The structural sections de-
scribe the components and the connections between them. An

example follows.
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MODULE TYPE (BLACKJACK).

ABSTRACTION:

DATA REPRESENTATION:
USERBIN: ARITHMETIC(BASE(2), UNSIGNED).
STANDARD ARITHMETIC: USBIN

SYMBOL DEFINITION: :
WORD 5 BITS.

' MINUS-TERM: "22" USBIN.
STRUCTURE:

PROCEDURE:

TRANSFER-VALUE:

CASS (Computer Aided Schematic System) by H. M.
Bayegan, under development in 1979, (16), (15).
PURPOSE: To provide a design automation system which

will operate at different levels.
DISCUSSION: Cass was developed at the Central Insti-

tute for Research at Oslo, Norway as part of a complete
design automation system. The language provides a set of
primitives which include capability to perform transfer, in-
dicate timing, set up "IF" and "WHEN" perform register oper-
ations etc. These can be used to combine elements into com-
plete working systems. The output not only includes simula-
tion but also circuit generation. An example in (16) uses a
UART to demonstrate a topdown structured approach.

CASSANDRE (Computer Aided CPesign and Simulation of
Logical Systems) by F. Lustman and Jean Mermet, 1968 (19),
PURPOSE: Precise hardware equivalent at the semantic
level, provides Dbetter parallelism, synchronous and asyn-

chronous simulation and delays.
DISCUSSION: Based on the works of Chu, Schlaeppi,

Iverson, and the language EPICURE. The language uses a
'basic feature called a "unit" which represents either a
piece of hardware or an arbitrarily defined group of
components. "A Cassandre description is a set of trees of
units. Each unit with the set of units it contains is a
complete Cassandre description. It can be compiled, run,
. « « in synchronous or asynchronous mode".

CDL (Computer Design Language), Yaohan Chu, 1964,
(24), (12), (80), (27), (26), (33) (49).
PURPOSE: One of the first CHDL's. Originally proposed
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as a means of communication and as a means to precisely
define the design description with respect to functional
organization, algorithms, and sequential operation.
DISCUSSION: A non-procedural language containing sev=-
eral statements to describe registers, sub-registers, ar-
rays, cache-registers memories and other components. Start
conditions are provided. Bara and Born (12) describe a
compiler/simulator developed in 1967 for CDL. Many other
CHDL's have used CDL as the starting point. An example of

the language follows.

REGISTER R(0-23), F(0-5), A(0-23)
SUBREGISTER R(OP) = R(05), R(1l) = R(6)
MEMORY M(C) = M(0 - 32767, 0-23)
DECODER K (0-9) = F
SWITCH POWER (ON)
TERMINAL ADD = K(O0)

SUBTRACT = K(1)
IF G=0 THEN F( <~ 10)

CSL (Computer Structure Language) by David R. Smith,
1975, (93).

PURPOSE: To overcome the shortcomings of other regis-
ter transfer language (e.g. CDL) such as "Labels, (unreada-
bility, error proneness, unnecessary wordiness), inadequate
sub-routine features, insufficient input/output features and

compiler speeds.
DISCUSSION: A compromise between nonprocedural and

procedural language is proposed using a "Task format". The
language was developed at SUNY at Stony Brook for use in ed-
ucation. This extension of CDL supports parallelism more
readily than CDL itself. Reference (12) describes an exten-
sive set-up at Michigan Technical University. The system
there includes handlirg of encoders, buses, partitions, and
I/0 flags. Includes six logical operators but does not
handle parallel functions. Examples follow.

FLIP FLOP : A, B, C; REGISTER H(-1:7), I(15:0);
SUBREGISTER : M <=> H(1l), N(1:3) <=> (L14:12);
TERMINAL : <-> A&B; SEARCH : X, MASK := Y

MATCHES = Z/;

DCDS (Digital Control Design System) Dby H. Potash,

1969, (96), (83).
DISCUSSION: A language for the simulation of digital

structure developed at UCLA to assist the designer of
computer systems.
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DDL (Digital Design Language) by J. R. Duley, 1967,
(36), (35), (31), (26).

PURPOSE: To assist the designer of logical computers
in the area of system design, logic design, Boolean equa-
tions, and documentation of these activities. This is
accomplished by alleviating "Time-consuming and error-prone
problems encountered in design documentation both as succes-
sive stages are completed and at the interface between
groups.". .

DISCUSSION: A block orientated language containing
statements for clocks, comments, wires, elements, delays,
memory and registers, The existence of logic to handle
complex data types is implied by the operations performed
without representing how this logic is implemented. Bit num-
bering may ascend or descend. A subset has been implemented
at Carlton University (Canada) by Professor Bowen and
others. Darringer states "The language reflects the
viewpoint that a digital computer is a set of automata
controlling the flow of data among registers, memories, and
interfaces. Unfortunately the designer must show this
viewpoint and is required to translate his algorithm into

state diagram form. He then specifies the operations that
occur in each state". )

DIDL (DIGITAL INTEGRATED DESIGN LANGUAGE), by A. M.
Despain, 1975, (34).

DISCUSSION: DIDL has "Combined the best features of
Algol, DDL, CDL, APL, ISP and other programming and desigu
languages". The language was used by Despain in combination
with PMS in the design of a Fourier transform system (93).

DIGITEST II(Digital Testing) by F.J. Ramig, 1975 (84).

PURPOSE: To overcome four "Well known" deficiencies in
current CHDL's - structural description, asynchronism and
parallelism, "Oversimplified data structure”, and widely
varying syntax and language from the languages ancestors.

DISCUSSION: Based on DIGITEST, to describe structure,
PL/I to describe behavior and Petri-nets to describe complex
control structure. The language uses three data types and
PL/I declarative statements. The principle of Petri-nets is
used as the theoretical approach to solve parallelism.
Petri-nets consists of a set of places containing a set of
tokens, a set of transitions with firing rules which move
tokens and directed edges. The presence or absence of the
token provides permission to "Fire" or withhold firing. An
example of the language follows.
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DCL(A,B,C) BIT (-16)"1","(4)FFF",("(1)1(4)D")"1");

DECLARE NUMBER FIXED (4,UN)DEFINED (B POSITION(2)):
_DCL 1 INPUT(5) 2 (START1l, START2) BIT(1l) INIT(1l):

ON CASE (D: (A,C),E:(B,C):

B: ON(A); CALL C

ON(A): IF (P) THEN B:

DSDL (?) BY J. L. Houle, 1974 (96) (56).
DISCUSSION: Adapted from DDL; written in XPL for the

IBM~-360.

ERES ("ERLANGER RECHNER ENTWURFS SPRACHE" = CHDL OF
ERLANGER) by P. P. Spies, M. Becker, and R. Klar, 1972,
(43), (80), (61).

PURPOSE: Extends CDL by providing a unique way of de-
seribing functional and temporal behavior of storage ele-
ments and extends timing concepts to include execution time
of micro-operations.

DISCUSSION. A non-procedural, register-transfer lan-
guage using statements to describe structure of the archi-
tecture functional behavior, and timing. The registers and
memories are regarded as primitives, the .timing is synchro-
nous with local embedded asynchronous micro-operations. The
language uses 0, 1, and "U" for values in the circuits with
the clock having values of zero or one. The language
supports both "active" and "passive" carriers. According to
Piloty, ERES has been used successfully as a teaching tool
to describe microprogramming methods.

EPICURE -- See Casandre.

FLOWWARE by Shingfat S. Chin, 1977, (23).
PURPOSE: To overcome the tediousness of converting a

pictorial description of registers into a written descrip-
tion.

DISCUSSION: The language was developed at the Univer-—
sity of Missouri-Rolla for student use. A Techtronix graph-
ics terminal is used to describe the proposed design follow-
ed by the invocation of Flowware which converts the graphic
description into character form. The compilation and simula-
tion is also carried out at the graphics terminal. The lan-
guage is be used in conjuction with other support software.

FST (Functional Simulator and Translator) by E. A.
Frank, 1967, (96).
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DISCUSSION: Written in Fortran for PhD thesis for use
on IBM-360 at the Case Western Reserve University (origi-
nally called CADSS). The system consists of three programs
- a translator, a simulator and a design generator. "The
source language allows specification of logical sequences of
operation without explicit specification of the control
logic. ... in either sequential or concurrent blocks, ...
the system has been used for instruction in logic design
course at Texas A & I, as well as for several hardware
designs".

G (for Directed Graph and Data Graph), by D. Bain and
p. J. O'Callaghan, 1976-1978, (99), (39).

PURPOSE: To address parallelism more realistically
through syntax based on Petri-net concepts.

DISCUSSION: The three basic concepts of LOGOS are re-—
tained, namely, separation of the control function, the use
of directed graph notation concepts, and a hierarchical
description. In using G language, the designer draws the
necessary data and control graphs, then converts them to G

for simulation.

GLIDE (Generalized Language for Interactive Descrip-
tion), by Alice Parker, 1975, (77).

PURPOSE: To provide a language which addresses the
problem of interface between components.

DISCUSSION: The language is built around a group of
primitives which form stand alone "processes". Each process
is enclosed by "BEGIN" and "END" between which the process

and its hardware are described. The primitives include
CONTROL, SYNCHRONIZATION, PRIORITY ALLOCATION, STATISTICS,
TECHNICAL PROBLEM, BUFFERING, ERROR CHECKING, and
FORMATTING.

HARD (Hardware Simulation in Education), Ivan Tomek,
1981, (99).

PURPOSE: Developed to replace simple laboratory exper-
iments usually performed in the first course in computer
organization. It was found that existing languages were
either not suitably orientated toward the student level or
were unavailable due to either cost or portability.

DISCUSSION: The Language was developed at Acadia
University, Wolfville, Nova Scotia to assist instruction in
a first course on computer organization. Thus it is specif-
ically adapted toward showing circuits such as gates, £flip-
flops, binary adders and other devices introduced at that
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level. The following example shows several lines of lan-
guage used to describe one of the circuits in the course.

CIRCUIT: ADDER 2
ADDER: Al, A2 :MODULE OF TYPE ADDER CALLED Al, A2
PARTS: INPUT A(2), B(2)
OUTPUT SUM(2), cCoUT
END
CONNECT: 0 TO: Al, CIN etc

HDL(Hardware Description Language) by W. A. Johnson,
Jane Crowley and J. D. Ray, under development in 1980, (59).

PURPOSE: To provide a language for mixed level simu-
lation suitable for assistance in design of VLSI components.

DISCUSSION: This language and support system were re-
ported as under development at Texas Instrument (Dallas) in
1980 and is intended for use in VLSI designs. The language
is used in conjunction with INTSIM, a mixed level simulator,
SIMCL, a simulator control language and CSL, a circuit
selection program.

HILO (for HIGH LEVEL, LOW LEVEL), by P. L. Flake and
G. Musgrove, 1974, (38), (33).

PURPOSE: To provide a language which is capable of de-
scribing the two levels usually used by the engineer =-- high
levels which ignores propagation delays, wave forms, etc and
includes the full description of the hardware; and low level
which takes these things into consideration.

DISCUSSION: The system uses two languages, one for
control using a procedural type and a second for data
description, register and IC packages. An example follows.

PROC CONTROL=(REFROC ENABLEAB, CLEARAB, LOADAB,
ADD, ENABLEC1, READY,
SIGNAL COUNT15, LSBB, START)
BEGIN A; READY IF START THEN CLEARAB, GO TO B
ELSE GO TO A;

ISP and ISPS (INSTRUCTION SET PROCESSOR) BY C. G.
Bell and A. Newell, 1974, (90), (9s6), (13), (78), (26).

PURPOSE: According to Siewiorek, the language was de-
veloped to "precisely describe the programming level of a
computer.” .

DISCUSSION: A Register-transfer, procedural language
written in Bliss, adapted from Algol, and implemented on the
PDP-10. The Language has been used in teaching, to compare
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machines via benchmarks, and as the descriptive language for
a design automation package. The language is primarily a
series of conditional/assignment statements, but does
provide for concurrent operation. A sample of the language

follows:

PC STATE
R[0:15] <0:31> GENERAL REGISTER

RO := R[O] REGISTER O

PC PANEL
SS<1:4> SENSE SWITCH

DATA

COMPUTE PANEIL, SWITCH
INSTRUCTION FORMAT

I<0:31> INSTRUCTION

IB := I<0O> IDENTIFIER BIT
DATA TYPES

BYTE := 8 BITSS

FUNCTIONS
BA := (70 <= OP <= 75) BYTE ADDRESS

LALSD (A Language for Automated Logic and System De-
sign), by S. Y. H. Su and M. B. Baray, 1971, (97).

PURPOSE: "Suitable for describing documentation, simu-
lation and synthesizing digital systems".

DISCUSSION: Implemented on the IBM-360 using PL/I as
the host language. The language provides a clear separation
of system behavior and system structure and language has
been found suitable for study of operation system problems
such as deadlocks and determinancy, without exhaustive
simulation. It provides the means to decompose the
description to the 1level desired by the use of parallel
control operations. Synchronous and asynchronous operations

may be mixed.

LASCAR (A Language for Simulation of Complex Architec-
ture) by Dominique Borrione, 1975 (18).

PURPOSE: To extend Cassandre so that architecture
using a hundred or more microprocessors running in parallel

can be studied.

DISCUSSION: A procediral, register transfer language
developed at the Compaignie Internationale pour 1'informa-
tiques and Ecole Nationale Superleure d'Informatique et de
Mathematiques Appliquees de Grenoble. The Lascar extension
includes two new types of variables - 'integer" and
"counter”, two new conversion operators to go between
Boolean and Integer, and an assignment symbol for integer
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and subroutine calls.

LCD (A Language for Computer Design) by C. J.
Evangelisti, G. Goertzel and H. Ofek, 1977, (4), (37).

PURPOSE: To help an engineer develop the control for a
clocked digital machine given a data flow and a behavior
specification of the machine.

.DISCUSSION: Specifically planned to assist in design
of logic of the control section of the CPU. "Both the data
flow and +the specification are described in LCD". The
language works as part of a larger system which includes a

specification description and simulator.

LDT (Logic Design Translator), by D. F. Gorman and J.
P. Anderson, 1962, (96).

DISCUSSION: A register transfer language implemented
on the Burroughs machine using Algol58 as the host language.

LOGAL (Logic Algorithmic Language), by John Lund,
1973, (94), (96).

PURPOSE: To reduce the required development time for a

- new computer design by use of "Rapid top-down design

iterations" and providing "Feedback to the designer early in
the process."

DISCUSSION: A register-transfer language adapted from
RTL, used with LADS (Logical algorithmic design system).
Both a simulator and a hardware generator have been written
in Fortran for use on the Univac 1108. An example follows.

>CMT #*%*k%* 4 BIT BI-DIRECTIONAL JOHNSOM COUNTER

>PLC JOHNSON 00-03: COUNT DIRECTION TO CRD1;

>CMT TOGGLE COUNT DIRECTION WHEN COUNTERS VALUE O.

SCMD | NOT COUNT DIRECTION TO COUNT DIRECTION IF JOHNSON
00~-03 = O#4

>IFB COUNT DIRECTION

>CMD JOHNSON 00-03 >PRT2> JOHNSON 4 BIT DN COUNTER

>CMD (NOT JOHNSON 03) & JOHNSON 00-02 TO JOHNSON 00-03

>IFB NOT COUNT DIRECTION

>CMD JOHNSON 00-03 >PRT2> JOHNSON 4 BIT UP COUNTER

>CMD JOHNSON 01-03 & (NOT JOHNSON 00) TO JOHNSON 00-03

N N

NN

LOGOS (?) by E. L. Glasser, 1969, (39), (33).
PURPOSE: To provide better treatment of parallelism in

the simulated model.
DISCUSSION: A hierarchical, directed graph, language
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originated at Case Western University loosely related to
Petri-nets. The rationale of Petri-nets is used to accomp-
1lish parallelism. Patrick Foulk at Heriot-Watt University,
Edinburgh has developed a translator for the language.

LOTIS (Language for Describing Logic, Timing, and
Sequencing) by Schaeppi, 1964 (87), (96), (31).

PURPOSE: "Intended for formally describing the logical
structure, the sequencing, and the timing of digital
machines".

DISCUSSION: A hierarchical, register-transfer language
dating to the early sixties in which every linguistic
constant corresponds to a unique machine element. Timing
can be specified as synchonous or asynchonous oOr any

combination of the two. Concurrency, time sharing and
interlocks can be described. The language allows an
arbitrary number of levels to be described. The buses are
handled as "transients". Schlaeppi proposes syntactic
checkers, and circuit synthesizers but does not discuss
implementation.

MANO's RTL (Register Transfer Language), H. Morris
Mano, 1976, (68), See RTL also.

PURPOSE: To improve Chu's CDL for use in education.

DISCUSSION: The paper by Lewis describes the effort
at the University of Santa Clara to develop a compiler based
on Manos's RTL and the effort in progress in 1979 to develop
a simulator.

MDL (Modular Design Language) by Jack Lipovski,
1973, (96), (70). A

PURPOSE: To provide a standard way to describe memory
and link variables.

DISCUSSION: The language is used to describe IC's or
a microprocessor using an event as the time from one fetch
to the next. APL has been used as the host language.

MODAL (?) BY G. R. Hellestrand and J. W. Makepeace,
1976, (50).

PURPOSE: The system, including the MODAL language was
developed so that a better teaching tool would be available.
The language and system places emphasis on being able to
define the system without pre-determined constraints and

upon a friendly interactive environment.
DISCUSSION: A hierarchical, register-transfer, dis-
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crete event, concurrent, block-structured CHDL. It has been
used for teaching for several years at the University of New
South Wales and is part of "A large and complex multi-
faceted project incorporating a CHDL, simulator and
monitor". The monitor working environment is described as
"APL, like" including the means to store descriptions, work
in an interactive environment, step through simulation etc.
The system has been used to describe parts of the AMD-2900
bit-slice hardware components.

MODEL/LINDA (MODEL describes the hardware, LINDA de-~
scribes the circuit behavior) by Irwin Lewis and Arnold
Peskin, 1975, (69).

PURPOSE: Designed toward overcoming shortcoming of
other design automatic systems, namely -- "usage complexity,
internal compatability among tasks, suitability for new
technology, simulator fidelity, extensibility, portability".

DISCUSSION: The language is statement oriented and
relatively close to a restricted form of a natural language
(English), "Where the operating symbols are evokative of the
designers jargon for those operations". All operations are
carried at the gate level (macros are available) since
'"Register transfer may gloss over subtle design problems”.
The statement types include DEVICE, CONNECTOR, MONITORING
and ACTION. The system uses an event based table driven
algorithm. Some of the statement forms are shown below.

DEVICE DEFINITION STATEMENT
NAME(I,J) /TYPE/INPUTS/ OUTPUTS/DELAY
type may be JK, RS, AND, OR, INV, NAND, NOR or ROM
CONNECTION STATEMENT
FROMTO/ NAME, OUTPUTNO/ NAME INPUTIO
BUS/ NAME(I,J) OUTPUT NO/ NAME (M, N)
MONITORING STATEMENT F /N= GA
SCOPE /OUTPUT LIST
SNAP /OUTPUT LIST / TIME
CONTROL STATEMENT
END /FUNCTION
END /MACRO
ACTION STATEMENT
START
STOP

OSM (an acronym for "JEZYK OPISU STRUKTUR MICROPRO-
GRAMOWANYCH", Polish for "A Language for Describing Micro-
programmed Structure"), by P. W. Marcyzinski, 1974, (72).

PURPOSE: Designed for describing a microprogrammed
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computer at the register level.
DISCUSSION: OSM is a "quasi-hierarchical language in

which the most extended description contains a clock, non-
sequential, and sequential structures". The sequential
structure contains multicoders, decoders, function units,
and a control graph which defines precedence of activity.
The non-procedural part contains "global decoders" which are
activated when distinguished registers change. This stops
other actions until the global actions are completed. OSM
has been implemented through a software support system call-
ed 3SM (Structure Simulation System for Microprogramming).

PHPL (Parallel Hardware Processing Language) by H.

Analuff and P. Funk, 1979, (7).
PURPOSE: To provide greater realism in simulating

real-time behavior by more closely addressing the handling
of signal changes.

DISCUSSION: A Hierarchical, procedural, register-
transfer language using several unique features for handling
timing, both synchronous and asynchronous. The clock can
describe complete architecture as well as details down to
flip-flops. The clock generator has three parameters --=
phase, pulse width, and period. The language allows change
to occur either as a rising or falling edge. There are six
types of operators. Example of the language follow.

REG R(0:9,1:0), T(1:0)
ACCESS REG(ADR) =
FOR ADR FROM 0 BY 1 TO 9 : R(ADR)
/ M/ P <- REG(F)
TIME TSETUP = 17 NS

PMS (Processor, Memory, Switches) by C. G. Bell and A.
Newall, 1971 (91), (96), (26), (34).

PURPOSE: To provide a notation to describe various
parts of a computer and computer network so that a uniform
nomenclature can be used.

DISCUSSION: The system uses seven basic components -
memory, link, switch, transducer, data-operation, and proc-

essor. The components can be connected to make a computer
with varying levels of detail. Components are themselves
decomposable. The PMS system can be used to develop an
understanding of a computer system. For example several
systems can be combined into a larger system using the PMS
language.
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RTL (Register Transfer Language) by C. G. Reed, et.al.
1952 and modified by H. Schorr, 1964, (88), (31), (96).

See also Mano's RTL.
PURPOSE : Circuit Synthesis using register transfer

statements.

DISCUSSION: The language "Describes a synchronous
digital computer as a set of conditional transfers of data
among registers and control variables". It has been
implemented on the CDC-1604 using Algol.

RTS I, II, AND III (Registertransferprache) by R.
Piloty, 1968, (80), (81).

PURPOSE: Developed at Technische Hochschule Darmstadt
for use in teaching Computer Science.

DISCUSSION: A register transfer, event oriented lan-
guage in three versions - I, II, and III. It is "used to
describe behavior and structure of digital systems in
courses on switching circuits and computer organization".
The software is written in Fortran and the language itself

is "Algol-like."

SDL (System Description Language) by W. M. vancleemput

1977, (100).
PURPOSE: "A language is needed that can be used by

the designer at all levels of the design process and that
allows him to record accurately all the information

pertinent to his design.”.
DISCUSSION: The language includes the concepts of

"accurate representation of structural information,
usefulness over all levels", applicable to different
purposes of the designer. The language is able to map
higher-level primitives into lower level ones. Language

examples follow.

NAME: SN7491;

PURPOSE: LOGSIM, CRTANALYSIS
LOGIC: GATE

TYPES NAMP, INV, RS;

EXT: DATA,. ENABLE,. CLOCK
OUTPUTS: Q

NAND: Gl

INV: Gl, G2;
RS: FFl, FF2, FF4, FF5, FF6, FF7, FF8

NET1 = FROM (.DATA) TO (Gl.IN1l)
NET2 = FROM (.ENABLE) TO (Gl, IN2)
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END

SDL I & II (System Design Language), E. P. Stabler,
1970. See ADLIB for discussion.

SFD-ALGOL (System Function Description) by D. L.
Parnas, 1966, {(31).

PURPOSE: Intended to accept any algorithm as a behav-
ioral description of a digital computer.

DISCUSSION: The system accepts the algorithmic de-
scription and converts it to a state table. The difficulty
is that any real computer has far too many states to be
contained in finite space: "e.g. a 32 bit word has four
(4) billion states”.

SIMBOL and SIMBOL2 (?) by J. W. Williams and R. W.
McGuffin, 1979, (105), (33).
_ PURPOSE: To improve the ability to verify that final
design is equivalent to the original design concept.
DISCUSSION: Developed at the International Computex
Ltd., Manchester as part of overall system to assist in the
development of mainframe computers. It is wused in con-
juction with an existing design automation system. Each
SIMBOL2 description specifies how to simulate the element as
well as a description of the <element. Each description
includes an identifier, input/output, memories, delay and

logic. An example follows.

*SPEC'
'INPUTS' (W, H(4
‘ouTPUTS' (W, H(
*MEMORIES' (W):;
'"ELTYPE' "MILL"
'"ESR'
'DELAY' D = (2, 5);
'IF' 'BOOLVAL' 'THEN'
'CASE' ++ 'ABS' 'INPUT' 2 'IN'
'C' 0000 1 'BECOMES' WO 'AFTER' D:

), H(32), H(32)):
32));

SL-1 (Structural Modelling Language) by R. Gardner,

1975, (44).
PURPOSE: To provide a language which focuses attention
on the Structure of a system, leaving behavior description
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for other techniques.

DISCUSSION: The language uses three standard parts to
define the system —-- modules, sockets, and interconnections.
The connection descriptions permit directional, bidirection-
al and undirectional descriptions. The module represents
one item in the system and the socket is the interface from
the module to the system. The language accepts a hierarch-

ical description.

SLIDE (Structural Language for Input/output), by Alice
Parker and J. J. Wallace, 1979 (104), (77).
PURPOSE: To better describe input/output devices and

interconnections.
DISCUSSION: A non-procedural language with parallel-

ism and delay. The language is built around a "process"
which is an independent executing environment, i.e. a piece
of hardware which has timing, registers etc. The language
is built upon GLIDE which is alsc listed in this table.

SSM (Simulation Language for Switching Circuits, using
Multivariant Edges), by W. Goerke and H. J. Hoffman, 1974,
(47).

PURPOSE: An extension of CDL providing gate delays,
definition of new type components, a check for stable
states, and speed up of execution on the Burrough 6700.

DISCUSSION: A comparison with CDL shows that SSM (on
B-6700) is about four times as fast, and SSM is more
convenient because of abbreviated expression. However memo-
ry and subregisters are difficult to define in SSM. The SSM
simulator processes delays and asynchronous transactions
much better than CDL and provides capability for detection
of race and hazard conditions. Simulation and printing are

. both Dbetter controlled in SSM, but SSM requires more memory

space.

) VDL (Vienna Definition Language) by P. Wegner, 1972,
(66), (79), (106).
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APPENDIX 3

THE FORMAL GRAMMAR OF CALSIM

CALSIM GRAMMAR VERSION 8-01-82.

1  <GOAL> ::= <SYSTEMS> END OF DESCRIPTIONS .
2  <SYSTEMS> ::= <SYSTEM>

3 | <SYSTEMS> <SYSTEM>

4  <SYSTEM> ::= <SYSTEM NAME><STATEMENTS><END OF STMNT>.
5  <SYSTEM NAME> ::= SYSTEM NAME <ARE> <IDENTIFIER> .

6 <ARE> ::= ARE

7 | Is

8 I

9 <END OF STMNT> ::= END OF <IDENTIFIER>

10 <STATEMENTS> ::= <STATEMENTS> <STATEMENT>

11 | <STATEMENT>

12  <STATEMENT> ::= <STORE STMNT> .

13 <COPY STMNT> .

14 <HIERARCHY STMNT> .

15 <CONNECTOR STMNT> .

16 <TIME STATEMENT> .

17 <COMPONENT STMNT> .

19 <PERIPHERAL STMN> .
20 <WIRING STMNT> .

21 <START STMNT> .

22

<STORE HEAD><STATEMENTS><END OF STMNT>
= <STORE AS> <IDENTIFIER>

STORE AS

I

|
|
I
|
I
i8 } <MEMORY STMNT> .
|
|
I
23 <STORE STMNT>:=
24  <STORE HEAD> ::

25 <STORE AS> :
26 <COPY STMNT>

<COPY HEAD>

<COPY HEAD> <,> <TIME CLAUSE>

28 <COPY HEAD> ::= COPY <IDENTIFIER>

29 { COPY <NUMBER> <EACH> <IDENTIFIER>
I

30 COPY <IDENTIFIER> <RENAME>
31 COPY <IDENTIFIER> <SUFFIXID>
32 <EACH> ::= EA

33 | EACH

34 <RENAME> ::= RENAME <IDENTIFIER>

35  <SUFFIXID> ::= SUFFIX <IDENTIFIER>

36 <,> 2:= ,

37 | <EMPTY>
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38 <TIME CLAUSES> ::= <TIME CLAUSE>
39 | <TIME CLAUSES> <;> <TIME CLAUSE>

40 <TIME CLAUSE> :: = <TIME=> <TIME> <,> <TIME2-3>
41 <TIME=> ::= TIME =

42  <TIME> ::= <NMBORSTAR>
|

43 <TIME> : <NMBORSTAR>
44  <NMBORSTAR> ::= <NUMBER>

45 | *

46 <TIME2-3> ::= <TIME> <TIME INCR>

47 | <EMPTY>

48 <TIME INCR> ::= <,> <TIME>

49 <HIERARCHY STMNT> ::= <LEVEL WORD> <MAJ. ASSY LIST>
50 <LEVEL WORD> ::= LEVEL <NUMBER> :

51 <MAJ .ASSY LIST> ::= <HIERARCHY HEAD> <MAJ.ASSEMBLIES>
52 | <MAJ. ASSY LIST> <:>

-~

<HIERARCHY HEAD><MAJ .ASSEMBLIES>
:= <IDENTIFIER> CONTAINS
:T <HARDWARE UNITS>

53 <HIERARCHY HEAD> ::
54 <MAJ. ASSEMBLIES> :

55 <MAJ. ASSEMBLIES> <,>
<HARDWARE UNITS>

56 <HARDWARE UNITS> ::= <IDENTIFIER> .

57 | <NUMBER> <EACH> <IDENTIFIER>

58 <> 2=

59 <CONNECTOR STMNT> ::= <CONNECTOR HEAD> <ARE NUMBERED>

<ARE NAMED>

60 <CONNECTOR HEAD> ::= BACKPLANE : <IDENTIFIER>

61 | CORD : <IDENTIFIER>

62 | BUS : <IDENTIFIER>

63 <ARE NUMBERED> ::T <ARE> NUMBERED <NUMBER LIST>
64

65 <NUMBER LIST> ::= <INTEGERS>

66 | <NUMBER LIST> <,> <INTEGERS>

67 <INTEGERS> ::= <RANGEl> <RANGE2>
68 | <NUMBER>

<(> <NUMBER>

— <NUMBER> )

72 <ARE NAMED> ::T <ANDNAMED> <NAME LIST>

73

74 <ANDNAMED> ::= AND NAMED

75 | NAMED

76 <NAME LIST> ::= <NAME LIST> <,> <IDENTIFIER>

77 | <IDENTIFIER>

78 <TIME STATEMENT> ::= <LIMIT TIME> <TIME>

79 <LIMIT TIME> ::= LIMIT <TIME=>

80 <COMPONENT STMNT> ::= <COMPONENT HEAD><CMPNT CLAUSES>
81 <COMPONENT HEAD> ::= COMPONENT : <IDENTIFIER> <,>

82 | CHIP : <IDENTIFIER> <,>
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83 <CMPNT CLAUSES> ::= <CMPNT CLAUSE>
84 | <CMPNT CLAUSES><;><CMPNT CLAUSE>
85 <CMPNT CLAUSE> ::= <COMMON CLAUSES>

86 | <CMPNT IF CLAUSE>

87 | <ON PULSE> <CMPNT LOGIC>

88  <COMMON CLAUSES> ::= <PIN CLAUSE>

89 | <TIMING CLAUSE>

20 | <REGISTER HEAD> <REGISTER LIST>
91 . | <SUBREG HEAD> <SUB REGISTERS>
92 | <CASCADE REG>

93 <PIN CLAUSE> ::= <PIN> <ARE NUMBERED> <ARE NAMED>

094 <PIN> ::= PIN

95 | PINS

26 | WIRES

97 <TIMING CLAUSE> ::= <SET TIME> <TIME>

o8 ¢SET TIME> ::= SET <TIME=>

99 <REGISTER HEAD> ::= REGISTERS <ARE>

100 | REGISTER <ARE>

101 <REGISTER LIST> ::= <REGISTER DSCR>

102 | <REGISTER LIST><,><REGISTER DSCR>
103 <REGISTER DSCR> ::= <IDENTIFIER> <DIMENSION>

104 <DIMENSION> ::= <(> <SUBSCRIPT> )

105 | <{(> , <SUBSCRIPT> )

106 | <FIRST DIM> <,> <SECOND DIM>

107 <SUBSCRIPT> ::= <INTEGERS>

108 | <IDENTIFIER>

109 | <PIN POSITIONS>
110 <PIN POSITIONS> ::= <PIN> <{> <NAME LIST> <}>
111 | <PIN> <{> <NUMBER LIST> <}>

112 | <PIN> <IDENTIFIER>

113 . | <PIN> <INTEGERS>

114 <{> ::= {

115 | C

116 ¢<}> ::= 1}

117 -

> <SUBSCRIPT>
SUBSCRIPT> )

118 <FIRST DIM> :: <

119 <SECOND DIM> H
120 <SUBREG HEAD> ::= SUBREGISTERS OF <IDENTIFIER> <ARE>
> ¢

126 <SUB REGISTERS = <REGISTER BITS>
122 | <SUB REGISTERS><, ><REGISTER BITS>

123 <REGISTER BITS> ::= <IDENTIFIER> <INTEGERS>
124. <CASCADE REG> ::= CASCADE <STRINGOFCADES> INTO

A~

<IDENTIFIER>
125 <STRINGOFCADES> ::= <IDENTIFIER>
126 : | <STRINGOFCADES> <,> <IDENTIFIER>
127 <CMPNT IF CLAUSE> ::= <IFSTRINGTHEN> <CMPNT LOGIC>
128 | <IFSTRINGTHEN> <CMPNT LOGIC>
ET.SE <CMPNT LOGIC>
129 <IFSTRINGTHEN> ::= <IF> <STRINGOFBOOLS> <THEN>
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130 <IF> ::= IF
131 ¢<STRINGOFBOOLS> ::=<STRINGOFBOOLS><NDOR><BOOLEAN EXP>
132 | <BOOLEAN EXP>
133 <NDOR> ::= AND
134 | OR
135 <BOOLEAN EXP> ::= <LOGICAL REPLMNT> <RELATIONAL>
: <LOGICAL REPLMNT>
136 | <(> <STRINGOFBOOLS> )
137 . <LOGICAL REPLMNT> ::= <SYMBOLIC VALUE>
138 | <VALUE>
139 <SYMBOLIC VALUE> ::= <REGISTER DSCR>
140 | <IDENTIFIER>
141 | <PIN PCSITIONS>
142 <VALUE> ::= <NUMBER> <BASE INDICATOR>
143 <BASE INDICATOR> ::= O
144 I Q
145 | H
146 . - | B
147 | D
148 [
149 <RELATIONAL> ::= NOT EQ
150 | EQ
151 | <
152 | >
153 | NOT <
154 | NoT >
155 <THEN> ::= THEN
156 <CMPNT LOGIC> ::= <CMPNT REP EXP>
157 | <CMPNT LOGIC> <,> <CMPNT REP EXP>
158 <CMPNT REP EXP>::=<SYMBOLIC VALUE><=><RIGHTHND LOGIC>
159 | <RESET TIME> <TIME>
160 <=> s:= =
161 <RIGHT HND LOGIC> ::= <OPERAND>
| <RIGHT HND LOGIC><OPERATOR><OPERAND>
163 <OPERAND?> ::= <LOGICAL REPLMNT>
164 | <MONADIC OPRATR> <LOGICAL REPLMNT>
165 | <(> <RIGHT HND LOGIC> )
166 | NOT <(> <RIGHT HND LOGIC> )
167 <MONADIC OPRATR> ::= RR
168 | SR
169 | RL
170 | sL
171 | cMP
172 | NEG
173 <OPERATOR> ::=+ | - | / | * | 1 | &
179 | XOR
180 | NOR
181 | NAND

182 <RESET TIME>
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183 <ELSE> ::= <,> ELSE
184 <ON PULSE> ::= ON PULSE «<,>

185 | oN <,>

186 <MEMORY STMNT> ::= <MEMORYHEAD> <MEMORY CLAUSES>

187 <MEMORYHEAD> ::= MEMORY : <IDENTIFIER>

188 | MICROMEMORY : <IDENTIFIER>

189 | AUXMEMORY : <IDENTIFIER> <NUMBER>
190 <MEMORY CLAUSES> ::= <MEMORY CLAUSE>

191 | <XMEMORY CLAUSES><;><MEMORY CLAUSE>
192 <MEMORY CLAUSE> ::= <COMMON CLAUSES>

193 | <SIZE CLAUSE>

194 | <MEMIF CLAUSE>

195 <ON PULSE> <MEM REP EXPRS>

FIRST SIZE NO> <SECOND SIZE NO>
SIZE = <NUMBER>

= * <NUMBER> .
<MEMIFTHEN> <MEM REP EXPRS>

196 <SIZE CLAUSE> :

197 <FIRST SIZE NO> ::
198 <SECOND SIZE NO> :
199 <MEMIF CLAUSE> ::T

e " AN —

200 <MEMIFTHEN> <MEM REP EXPRS> <ELSE>
<MEM REP EXPRS>

201 <MEMIFTHEN> ::= <IF> <STRNGMEMBOOLS> <THEN>

202 <STRNGMEMBOOLS> ::= <STRNGMEMBOOLS> <NDOR> <MEMBOOL>

203 | <MEMBOOL>

204 <MEMBOOL> ::=<MEM REPLCMNT><RELATIONAL><MEM REPLCMNT>

205 <MEM REPLCMNT> ::= <LOGICAL REPLMNT>

206 | <MEMORY VALUE>

207 <MEMORY VALUE> ::= <MEMORY> <DIMENSION>

208 <MEMORY> ::= MEMORY

209 <MEM REP EXPRS> ::= <MEM REP EXPRS> <,> <MEM REP EXP>

210 | <MEM REP EXP>

211 <MEM REP EXP> ::= <MEM REPL LEFT> <=> <MEM REP RIGHT>

212 | <RESET TIME> <TIME>

213 <MEM REPL LEFT> ::= <MEMORY VALUE>

214 <SYMBOLIC VALUE>

<MEMORY VALUE>

<RIGHT HND LOGIC>

:= <PERIPHERAL ID><PERIPH CLAUSES>
I-0 : <IDENTIFIER>

215 <MEM REP RIGHT> :

217 <PERIPHERAL STMN>
218 <PERIPHERAL ID>

N

| aad

(o)
oo —0 —

219 | PORT : .<IDENTIFIER>

220 | TERMINAL : <IDENTIFIER>
221 | PRINTER : <IDENTIFIER>

222 <PERIPH CLAUSES> ::= <PERIPH CLAUSE>

223 | <PERIPH CLAUSES><;><PERIPH CLAUSE>
224 <PERIPH CLAUSE> ::= <COMMON CLAUSES>

225 | <FORMAT CLAUSE>

226 | <PERIPHIF CLAUSE>

227 | <ON PULSE> <IN-OUT EXPRNS>
228 <FORMAT CLAUSE> ::= <FORMAT IS> <FORMAT>

229 <FORMAT IS> ::= FORMAT <ARE>
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230 <FORMAT> ::= HEX

231 | HEXADECIMAL
232 OCTAL
233 BINARY
234 | AscCII
235 | BCD

236 EBCDIC
237 GREY

238 PCKD-DEC
239 SGND-BIN
240 | FLPOINT

241 <PERIPHIF CLAUSE> ::= <IFSTRINGTHEN> <IN-OUT EXPRNS>
| <IFSTRINGTHEN> <IN-OUT EXPRNS>
LSE> <IN-OUT EXPRNS>

243 <IN-OUT EXPRNS> ::=<IN-OUT EXPRNS><,><IN~OUT REP EXP>

244 | <IN-OUT REP EXP>

245 <IN-OUT REP EXP> ::= <OUTPUT EXP> <=> <INPUT EXP>

246 | DISPLAY <"> <">

247 | <RESET TIME> <TIME>

248 <> ge= "

249 <OUTPUT EXP> ::= <OUTPUT>

250 | <LOGICAL REPLMNT>

251 <OUTPUT> ::= OUTPUT

252 <INPUT EXP> ::= <INPUT>

253 | <LOGICAL REPLMNT>

254 <INPUT> ::= INPUT

255 <WIRING STMNT> ::= <WIRING HEAD> <TERMINAL PNTS>

256 <WIRING HEAD> ::= CONNECT <IDENTIFIER>

257 <TERMINAL PNTS> ::= <TO TERMINAL> <END ONE> <END TWO>

258 | <TERMINAL PNTS> ; <TO TERMINAL>
<END ONE> <END TWO>

259 <TO TERMINAL> ::= TO <IDENTIFIER>

260 <END ONE> ::= <{> <NUMBER LIST> <}>

261 <END TWO> ::= <{> <NUMBER LIST> <}>

262 ¢START STMNT> ::= <STRT STMNT HEAD> <START CLAUSES>

263 <STRT STMNT HEAD> ::= START :

264 <START CLAUSES> ::= <START CLAUSES> ; <START CLAUSE>

265 | <START CLAUSE>

266 <START CLAUSE> ::= <MEM REPL LEFT> <=> <VALUE>

267 | <MEM REPL LEFT> <OF-IN>
<IDENTIFIER> <=> <VALUE>

268 | <TIMING CLAUSE>

269 <OF-IN> ::= OF

270 | IN
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APPENDIX 4

INDEX TO RESERVED WORDS USED IN CALSIM GRAMMAR

SYMBOL USED IN PRODUCTION SYMBOL, USED IN PRODUCTION
. 1,4,5,12-22 RL 169
< 151,153 RR 167
( 71 SL 170
+ 173 SR 168
& 178 TO 259
! 177 AND 74,133
* 45,176,198 ARE 6
) 70,104,105,119, BCD 235
136,165,166 BUS 62
: 58,258,264 CMP 171
- 70,174 END 1,9
/ 175 HEX 230
' 36,105 I-0 218
> 152,154 NEG 172
: 43,50,60-62,81,82, NOR 180
187-189,218,219 NOT 149,153,154,166
220,221,263 PIN 94
= 40,41,160,197 SET 98
u 248 XOR 179
{ 114 CHIP 82
} 116 COPY 28-31
L 115 CORD 61
] 117 EACH 33
B 146 ELSE 183
D 147 GREY 237
H 145 INTO 124
o) 143 NAME 5
Q 144 NAND 181
AS 25 PINS 95
EA 32 PORT 219
EQ 149,150 SIZE 197
IF 130 THEN 155
IN 270 TIME 40
Is 7 ASCII 234
OF 1,9,120,269 INPUT 354
ON 184,185 LEVEL 50
OR 134 LIMIT 79
103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com



104

OUTPUT 251

RENAME 34

SUFFIX 35

SYSTEM 5

<EMPTY> 8,37,48,64,73,148

CASCADE 124

CONNECT 256

DISPLAY 246

FLPOINT 240

PRINTER 221

<NUMBER> 29,44,50,57,68,69,70,142,189,197,198

CONTAINS 53

NUMBERED 63

PCKD-DEC 238

REGISTER 100

SGND-BIN 239

TERMINAL 220

AUXMEMORY 189

BACKPLANE 60

COMPONENT 81

REGISTERS 99

HEXADECIMAL 231

MICROMEMORY 188

<IDENTIFIER> 5,9,24,28,29,30,31,34,35,53,56,57,60,61,
62,76,77,81,82,103,108,112,120,123,124,
125,126,140,187,188,189,218,219,220,221
256,259,267

DESCRIPTIONS 1

SUBREGISTERS 120

<(> 69,104,105,118,136,165,166

<;> 52,84,191,223

<,> 27,39,47,55,66,76,81,82,102,106,122,126,
157,183,184,185,209,243

<=> 158,211,245,266,267

<" 246 '

<{> 110,111,260,261

<}> 110,111,260,261

<IF> 129,201

<ARE> 5,63,99,100,120,229

<PIN> 93,110,111,112,113

<EACH> 29,57

<ELSE> 128,200,242

<GOAL> NOT USED IN THE RHS OF ANY PRODUCTION

<NDOR> 131,202

<THEN> 129,201

<TIME> 38,39,43,46,47,78,97,159,212,247

<INPUT> 252

<OF-IN> 267

<TIME=> 38,39,79,98,182

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com



<VALUE>
<FORMAT?>
<MEMORY>
<OUTPUT>
<RANGE1l>
<RANGE2>
<RENAME>
<SYSTEM>

<END ONE>
<END TWO>
<MEMBOOL>
<OPERAND>
<SYSTEMS>
<TIME2-3>
<ANDNAMED>
<INTEGERS>
<ON PULSE>
<OPERATOR>
<SET TIME>
<STORE AS>-
<SUFFIXID>
<ARE NAMED>
<COPY HEAD>
<DIMENSION>
<FIRST DIM>
<FORMAT IS>
<INPUT EXP>
<MEMIFTHEN>
<NAME LIST>
<NMBORSTAR>
<STATEMENT>
<SUBSCRIPT>
<TIME INCR>
<COPY STMNT>
<LEVEL WORD>
<LIMIT TIME>
<MEMORYHEAD>
<QUTPUT EXP>
<PIN CLAUSE>
<RELATIONAL>
<RESET TIME>
<SECOND DIM>
<STATEMENTS>
<STORE HEAD>
<BOOLEAN EXP>
<CASCADE REG>
<CMPNT LOGIC>
<MEM REP EXP>
<NUMBER LIST>
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138,266,267
228

207

249

67

67

30

2,3

257,258
257,258
202,203
161,162

1,3

39

72
65,66,107,113,123
87,195,227
162

97

24

31

59,93
26,27
103,207

106

228

245

199,200
72,76,110
42,43

10,11
104,105,118,119
46

13

49

78

186

245

88

135,204
159,212,247
106

4,10,23

23

131,132

92
87,127,128,157
209,210
63,66,111,260,261



<SIZE CLAUSE>
<START STMNT>
<STORE STMNT>
<SUBREG HEAD>
<SYSTEM NAME>
<TIME CLAUSE>
<TO TERMINAL>
<WIRING HEAD>
<ARE NUMBERED>
<CMPNT CLAUSE>
<END OF STMNT>
<IFSTRINGTHEN>
<MEM REPLCMNT>
<MEMIF CLAUSE>
<MEMORY STMNT>
<MEMORY VALUE>
<START CLAUSE>
<WIRING STMNT>
<CMPNT CLAUSES>
<CMPNT REP EXP>
<FIRST SIZE NO>
<FORMAT CLAUSE>
<IN-OUT EXPRNS>
<MEM REP EXPRS>
<MEM REP RIGHT>
<MEM REPL LEFT>
<MEMORY CLAUSE>
<PERIPH CLAUSE>
<PERIPHERAL ID>
<PIN POSITIONS>
<REGISTER BITS>
<REGISTER DSCR>
<REGISTER HEAD>
<REGISTER LIST>
<START CLAUSES>
<STRINGOFBOOLS>
<STRINGOFCADES>
<STRNGMEMBOOLS >
<SUB REGISTERS>
<TERMINAL PNTS>
<TIMING CLAUSE>
<BASE INDICATOR>
<COMMON CLAUSES>
<COMPONENT HEAD>
<CONNECTOR HEAD>
<HARDWARE UNITS>
<HIERARCHY HEAD>
<IN-OUT REP EXP>
<MAJ. ASSY LIST>

193

21

12

91

4

27

257,258

255

59,93

83,84

4,23
127,128,241,242
204

194

18
206,213,215
264,265

20

80,84
156,157

196

225
227,241,242,243
195,199,200,209
211 -
211,266,267
190,191
222,223

217

109,141
126,122
101,102,139
90

90,102
262,264
129,131,136
124,126
201,202
91,122
255,258
89,268

142
85,192,224
80

59

54,55

51,52
243,244
49,52

106
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<MEMORY CLAUSES> 186,191

<MONADIC OPRATR> 164

<PERIPH CLAUSES> 217,223

<SECOND SIZE NO> 196

<SYMBOLIC VALUE> 137,158,214

<TIME STATEMENT> 16

<CMPNT IF CLAUSE> 86

<COMPONENT STMNT> 17

<CONNECTOR STMNT> 15

<HIERARCHY STMNT> 14

<LLOGICAL REPLMNT> 135,163,164,205,250,253
<MAJ. ASSEMBLIES> 51,52,55
<PERIPHERAL STMN> 19

<PERIPHIF CLAUSE> 226

<RIGHT HND LOGIC> 158,162,165,166,216
<STRT STMNT HEAD> 262
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APPENDIX 5

TRIAL GRAMMAR OF MANUFACTURING DESCRIPTION LANGUAGE

<GOAL> <SYSTEMS> END OF DESCRIPTIONS .
<SYSTEMS> <SYSTEM>
<SYSTEMS> <SYSTEM> .
<SYSTEM> <SYSTEM NAME> <STATEMENTS> <END OF STMNT>.
<SYSTEM NAME> SYSTEM NAME <IDENTIFIER> .
<END OF STMNT> END OF <IDENTIFIER>
<STATEMENTS> <STATEMENTS> <STATEMENT>
~STATEMENT?>
<STATEMENT> <SAVE STMNT> .

<COPY STMNT> .
<ORGNZTION STMNT> .
<CONTNERS STMNT> .
<XPORTUNITS STMNT> .
<SKILLSREQ STMNT> .
<FACILTIES STMNT> .
<RECEIVING STMN> .
<WAREHOUSE STMNT> .
<MFG-UNIT STMNT> .
<INSPECTION STMNT> .
<MFGPLANNG STMNT> .
<ROUTING STMNT> .
<SHIPPING STMNT> .

' <START STMNT> . :

<SAVE STMNT> <SAVE HEAD> <STATEMENTS> <END OF STMNT>

<SAVE HEAD> <SAVE AS> <IDENTIFIER>

<SAVE AS> SAVE AS

<COPY STMNT> <COPY LEADER> <STATEMENT> <END OF STMNT>
<COPY LEADER> <COPY HEAD> <USING TIME> <TIME CLAUSES> ;
<COPY HEAD> COPY <IDENTIFIER> <RENAME>

<RENAME> RENAME <IDENTIFIER>

<SUFFIXID> SUFFIX <IDENTIFIER>

<ORGNZTION STMNT> <LEVEL WORD> <UPR ORGAN LIST>

<LEVEL WORD> LEVEL <NUMBER> :

<UPR ORGAN LIST> <ORGNZTION HEAD> <MAJ. WORK AREAS>
<UPR ORGAN LIST> ; <ORGNZTION HEAD>

<MAJ. WORK AREAS>
<ORGNZTION HEAD> <IDENTIFIER> CONTAINS

<MAJ. WORK AREAS> <HARDWARE UNITS>
<MAJ. WORK AREAS> <,> <HARDWARE UNITS>

108
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<HARDWARE UNITS>
<,>

<CONTNERS STMNT>
<CONTNERS HEAD>
<CONTNER CLAUSES>

<CONTNER CLAUSE>

<SIZE=>
<WIDTH>
<LENGTH>
<HEIGHT>
<EACH>

<MFG-UNIT STMNT>
<MFG~UNIT HEAD>
<MFGUNITCLAUSES>

<MFGUNIT CLAUSE>

<XPORTUNITS>
<XPORT HEAD>
<XPORT CLAUSES>

<XPORT CLAUSE>
<CAPACITY HEAD>
<CAPACITY LIST>

<FACILTIES STMNT>
<FACILITY HAED>
<FAC. CLAUSES>

<FAC. CLAUSE>

<SKILLSREQ STMNT>
<SKILL HEAD>

109

<IDENTIFIER>

f ]

<EMPTY>

<CONTNERS HEAD> <CONTNEK CLAUSES>
<CNTNER: <IDENTIFIER> <NUMBER> <EACH>

<CONTNER CLAUSE>
<CONTNER CLAUSES>
CAPACITY = <NUMBER> POUNDS

<CONTNER CLAUSE>

<SIZE=> <WIDTH> X <LENGTH> X <HEIGHT>

TOOL # = <IDENTIFIER>

<ETC ETC TO DEVELOP DESCRIPTIONS>
SIZE =

<NUMBER?>

<NUMBER>

<NUMBER»>

EA

EACH

<MFG-UNIT HEAD> <MFG UNIT CLAUSES>
MFG-UNIT : <IDENTIFIER>
<MFGUNITCLAUSES> ; <MFGUNIT CLAUSE>

<MFGUNIT CLAUSE>

EQUIPMENT IS <FAC. LIST>
MANNING IS <BILLET LIST>
AREA IS <NUMBER>

IN STORAGE IS <STORAGE LIST>
OUT STORAGE IS <STORAGE LIST>
COM STORAGE IS <STORAGE LIST»>
HANDTOOLS ARE <TOOL LIST>
<XPORT HEAD> <XPORT CLAUSES>
MOVER: <IDENTIFIER>
<XPORT CLAUSES> <,>
<XPORT CLAUSE>
<CAPACITY HEAD>
CAPACITY =
<NUMBER> <EACH>
<CAPACITY LIST> <OR> <NUMBER <EACH>
<FACILITY HEAD> <FAC. CLAUSES>
FACILITY : <IDENTIFIER>

<FAC. CLAUSES> ; <FAC. CLAUSE>
<FAC. CLAUSE>

COST = <NUMBER>

PURCHASE DATE = <NUMBER>

MFG = <IDENTIFIER>

SPACE NEEDED = <NUMBER?>

POWER REQ = <NUMBER>

EXPECTED LIFE = <NUMBER>

ID = <IDENTIFIER>

<SKILL HEAD> <SKILL CLAUSES>

SKILL: <SKILL NMBER>

<XPORT CLAUSE>

<CAPACITY LIST>

<TYPE>

<TYPE>
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<SKILL NMBR> <NUMBER?>
<SKILL CLAUSES> <SKILL CLAUSES> <;> <SKILL CLAUSE>
<SKILL HEAD> <SKILL : > <IDENTIFER>
<SKILL CLAUSES> <SKILI, CLAUSES> ; <SKILL CLAUSE>

' <SKILL CLAUSE>

<SKILL CLAUSE> DEGREE = <IDENTIFIER>
GRADE = <NUMBER>
RATE = <NUMBER?>
OVHD RATE = <NUMBER>
TRADE TNG = <NUMBER>
GEN EXP = <NUMBER>

SPECIF EXP = <NUMBER>
WT LIMIT = <NUMBER>
SEEING = <NUMBER>
PHYS COND = <NUMBER>
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APPENDIX 6

USERS' MANUAL FOR CALSIM/SIMCAL
COMPUTER ARCHITECTURE LANGUAGE FOR SIMULATION
AND

©«IMULATOR FOR COMPUTER ARCHITECTURE LANGUAGE

A COMPUTER HARDWARE DESCRIPTION LANGUAGE AND SIMULATOR
FOR

COMPUTER ORGANIZATION AND DESIGN STUDIES IN

COMPUTER SCIENCE EDUCATION

W. A. Skelton
THE UNIVERSITY OF TEXAS AT ‘ARLINGTON

September 1982
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PREFACE

The language and software support system described
here may be used to assist the student in understanding com-
puter organization and architecture above the switch circuit
level. The system is equally usable for both beginning and
advanced studies at the architectural, programming, and
register transfer levels.

A complete description of the language is presented in
chapter three (3), a design approach in chapter five (5),
and detail instructions for using the simulator in chapter
six (6). Like programming languages, the method of learning
Calsim must be a spiral one of learning a small part of the
syntax, followed by use to "fix" that portion studied.

At the beginning level, previously prepared code, a-

vailable through the system, may be used to, simulate
flip~-flops, half-adders, and other elementary devices. The
student is also free to make changes to the configuration in

his copy .so that various actions can be studied.

At an intermediate level, the system can be wused to
build simulators for eight bit and sixteen bit microproc-
‘essors. Simulation can be carried out allowing the user to
debug programs prepared for the devices. Operating hardware
may also be designed and tested using either microprocessors
or more elementary components.

At an advanced level, the system will support simula-
tion and design activity using microprogramming including
bit-sliced hardware. Other advanced projects may include
investigation into parallel operations and the use of
hardware to study communication protocol problems.

W. A. Skelton
. September 10, 1982
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1.0 INTRODUCTION

1.1 THE NATURE OF HARDWARE DESCRIPTION LANGUAGES

Languages have been developed in the last two decades to de-
fine computer hardware designs in precise formal terms.
These Languages have been known by a variety of names some
of which are: Hardware Description Language (HDL), Computer
Hardware Description Language (CHDL), Computer Design Lan-
guage (CDL), System Pesign Language (SDL) and Architecture
Design Language (ADL). These languages have many functions
but they all attempt to convey more preciseness in the func-
tional and physical design description without introducing
more complexity. In addition, CHDL's are expected to be
machine processable, i.e., it is expected that the language
will allow the input to be checked for completeness and ac-

curacy and that extensions can be directly prepared which
will provide simulatior and/or circuit genergilon.

1.2 PURPOSES OF THE LANGUAGES.

A means of describing design intent unambiguously.
To assist simulation of the proposed design.

To assist in automatic generation of circuits.

To provide a test bed for microprogramming studies.
To evaluate alternate hardware designs.

To aid in Computer Science education.

The languages have been developed at several levels, depend-
ing on the intended use, and proposals have been made to
create a universal language in which one could simply use
the portion of the language for the level desired. Unfortu-

nately, this has not yet come to pass.

At the gate (switch circuit) level, the actual arrangement
of the gates are a part of the hardware under consideration,
whereas the register transfer level is more more abstract,
not addressing anything below a single bit. As the LSI's
(Large Scale Integrated Circuits) became available in the
seventies, emphasis shifted to still higher levels of
computer organization. Calsim addresses the register
transfer, programming, and system (architectural) levels.

The system works well for investigations using microprogram-
mable designs including those using bit-sliced components.

page 1
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1.3 THE CALSIM LANGUAGE.

The language called CALSIM (Computer Architecture Language
for SIMulation) consists of a series of English-like
statements which describe the hardware system under study.
The user starts the description by providing a system name
and a name for each of the modules comprising the system,
including connectors such as cords, buses and backplanes.

The assemblies are next decomposed into smaller groups until
the basic chips and connectors are reached. The description
of these elementary items - chips, memories, and connectors,
are then entered. At the lowest hierarchical 1level, the
connectors will be given numbers and may be given names of
up to six (6) characters. The logical component descriptions
are usually taken directly from the manufacturer's data
sheet, a complex chip requiring up to several hundred lines,
with the user modifying the timing as reguired. The elemen-
tary item description will include:

1. Registers: Names, type, length (and width).
2. Pins Description: Names and numbers of pins.
3. Timing functions: Sets times the chip is active.

4. Logical functions: Describes the logic of the chip.

Both memory and peripheral device descriptions use the above
functions and have additional language features to augment
their descriptions. Examples of this are the memory size
clause and a format clause for passing data in and out of
the peripheral. This allows data passing to the user's ter-
minal to be converted to a readable ASCII format and the
data from the terminal to be converted from ASCII to the

format required for storage.

When all of the components, including the peripherals and
memory have been entered, the components are "wired" using
the wiring statement. The starting conditions for the trial
machine may also be set using the start statement.

1.4 DESIGNING A SYSTEM.

The user prepares the design, writes the Calsim description,
and processes it through the compiler. Errors are corrected
and the description is reprocessed until it is free of syn-
tax and logical errors at which time it is ready to simu-
late. The user first provides the contents of main memory,
micromemory, memory, other memories, and input data. He

page 2
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" then starts the simulation. Appendix 3 contains a variety
of examples which mav be used for familiarization.

The user will find that the block diagram and logic descrip-
tion of the system under study are sufficient to represent
the object machine providing the block diagram includes a
clear representation of the connections between the compo-
nents. In many cases the user may wish to use an abstract-
ion of the actual design, particularly in the early stages
of the project or where the details are not significant to

the work being performed.

It is usually beneficial to develop the descriptions of the
chips to be used prior to system design so that the "chips"
are ready for use when needed. Such descriptions may be
checked for syntax errors and proper operation in the simu-~
lator prior to storing in the user's library. In some cases,
a proven description of the chip may already be available
from a library of chip descriptions.

The complete software support system consists of:

* A LANGUAGE -
CALSIM (Computer Architecture Language for SIMulation)

* A SOFTWARE SUPPORT SYSTEM -
SIMCAL (SIMulator for Computer Architectural Language)

* THE DEC-20 SYSTEM - '
used to create/edit support files and execute Simcal
(All DEC contrcl characters are active inside Simcal.)

1.5 SYSTEM OVERVIEW

Support is provided for study of logical designs, from
single component checkout to microprogrammable machine de-
signs, for the following functions:

A language to specify a design including the logic.

A compiler to build tables to drive the simulator.

Software to print the tables in readable format.

Support for a user's component library.

Read-in of memory, microcode, and other memory code.

page 3
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A simulator driven by the hardware description tables.

A friendly interface between the user and simulator.

Several proven designs which may be used as exercises.

page 4
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2.0 GETTING STARTED WITH THE CALSIM/SIMCAL SYSTEM

2.1 GETTING ON THE DEC-20.

The user should first acquire skill with the "TOPS" and
"EDIT" commands, using the "HELP" and "?" as needed or the
user may prefer to use Wybur on the IBM-4341 to build files.
These can be transferred to the DEC-20 with the TRANSFER
command and "cleaned up" on the DEC-20 by using "TRAPLINK".

2.2 GETTING THE SIMCAL MASTER FILE AND STARTING EXECUTION.

The user will need several files, some of which are empty.
The 1list of files needed may be obtained by entering "COPY
<CS.Bnnn-acntname>SIMCAL.CMD." The user then prints the

il contents of that file and creates in his own workspace all
of the files 1listed (they may be empty) which do not have
"¢CS.Bnnn-acntname>" at their Dbeginning. The remaining
files will be obtained from from CS.Bann at execution time.
The user is then ready to execute the command file:

TAK<esc>SIMCAL.CMD

The machine will start execution of the command file by
first obtaining SIMCAL.REL from CS.Bnnn storage, binding the
support files to SIMCAL.REL, and starting execution. The
entry message displays the version number of Simcal. The
user shoul become familiar with the software by using the
commands in the software support system including "HELP" and
won WHELP" will provide an explanation and "?" will list
the commands availble in each particular environment.

2.3 ENTERING SIMCAL AND COMPILING A DESIGN DESCRIPTION.

The user prepares a description of a hardware design by
using one of the examples shown in Appendix 3 or preparing a
description from an original design. The file must be left
unnumbered and renamed "SIMHDW.DAT". Execution is started
by entering "TAKE SIMCAL.CMD". Once in Simcal, entry of
"HDW" at the terminal will place the user in the compiler
environment where compilation is started by use of "C,P"
(COMPILE, PRINT). Error correction and recompilation is
repeated until the description is error free. The user then
enters the 'TAB' section of Simcal, prints the tables, and
compares them to the original design intent.

page 5
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2.4 MEMORY CODE NEEDED.

If program code is needed to test the design, it is prepared
in a work file and renamed "SIMPGM.DAT" when ready for use.
When complete, the memory file is read into the simulator
memory, after compilation of the hardware description, but
before simulation. If the design is microprogrammable, the
user must also prepare microcode. The file containing the
microcode will be renamed SIMMIC.DAT when complete. Other
memory is entered in one or more files named 'SIMAXn.DAT',
where 'n' is either 1, 2, or 3. These will be read-in
through the 'AUX' section of Simcal. The format, uses, and
details of reading in the code is found in section three.

2.5 INPUT AND OUTPUT DATA FILES

Finally if an input data file is needed by the executing
module during simulation, then up to three files can be used
which are labeled SIMWK1l.DAT, SIMWK2.DAT, and SIMWK3.DAT.
If an output file is needed, any of these files may be used
as output from the program being executed by creating an

«w.2gpty file. When a file is used as input or output, the
file is automatically opened on entry to simulation and
automatically closed on exit from simulation. Reading or
writing may be accomplished a byte at a time or other
increments as defined by the user's hardware description or
program. Input and output files from the executing program
will always start at the beginning of the file. Output
files will write over any data present. Restart of input or
output files may be accomplished by either 1leaving and
returning to the simulator or by execution of the "START"
command as explained in section 6.9 of this manual.

2.6 SIMULATION.

When all of the steps above are complete, the user is ready
to simulate the hardware description. The steps that have
been necessary to reach this point are summarized below.

1. Design (or COPY) device descriptions to be simulated.
2. Rename the CHDL description file as SIMHDW.DAT.

3. Enter Simcal and compile the description.

4. Correct the errors and recompile until error free.

5. Print tables of the compilation and compare to intent.
6. Correct hardware descriptions as required.

7. Recompile as required.
8. Write the program code and place in SIMPGM.DAT file.

page 6
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9. Write the microcode and place in SIMMIC.DAT file.
~10. Write other memory code as required.

11. Read all memory code into Simcal.

12, Write input data into SIMWKn.DAT as required.
13. Write a test plan.

14. Simulate the hardware by entering "SIM".

15. Determine errors and repeat as required.

page 7
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3.0 THE CALSIM LANGUACE

3.1 STARTING A HARDWARE DESCRIPTION

Calsim is free form and accepts all entries from column one
through column eighty without using continuation characters.
In the examples shown here, the indentation is made so the
reader can more clearly distinguish the description from the
actual text. Calsim language is organized by statements,
each ending in a period, and most are divided into clauses
separated by semicolons. A Backus Normal Form (BNF) listing
of the grammar is available through Simcal by entering "BNF"
in the "DOC" environment.

The compiler will terminate the analysis of a statement if
an error is discovered in the syntax, skipping to the next
statement to continue compilation. The user must then cor-
rect the error in order for the syntactical analysis of that
statement to continue. Calsim uses approximately one hun-
dred reserved words and symbols (see Appendix 1) which may
not be used for component names (identifiers).

The description of the user's design will be included be-
tween +the two statements in the example shown below using a
system name of up to 30 characters. Two or more hardware
descriptions during one compilation may be accomplished by
following the end statement in the example with a second
system name statement and description. Note that the
statements end with a period, a part of the required syntax.

- SYSTEM NAME myveryowndesign.
description of the system
END OF myveryowndesign.
SYSTEM NAME second-description.
second system goes here.
END OF second-description.
END OF DESCRIPTIONS. (Last entry in listing)

3.2 THE HIERARCHICAL STATEMENT
The design under study is sub-divided into major consoles,
boxes, boards, etc. These in turn are sub-divided into
lower levels down to the component level. The LSI is ordi-
narily the lowest level, but breakdown may be carried to
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lower levels when required. Each of the components are
given a name of no more than 12 letters, hyphens, or
numbers, starting with a letter. The words of the language
are separated by spaces and where a list is used, commas may
be used also to separate the members. An example follows:

LEVEL 1: MYVERYOWNDESIGN CONTAINS FRONTPANEL, BOX1,
CORD1, TERMINALI.

The level number may be any integer from 1 through 99 and as
each lower level is described, a larger number is used. In
the example BOX1l might then be further decomposed as:

LEVEL 2: BOX1 CONTAINS BGBKPLANE BOARD1 BOARD2 BOARD3.

The assemblies are then divided into their component parts.
If a single type component is used several times, syntax is
available to preclude the necessity of repetitive entries of
the same item as shown below.

LEVEL 3: BOARD1 CONTAINS 4 EACH AM931, BRDA, BRDB,
2 EA AX972.

The system will assign a two digit number to the end of any
description preceded by the "EACH" expression. The state-
ment above calls for only one "BRDA" and "BRDB", but four
(4) "AM931" chips and two "AX972" chips. The AM931l's will
have "01", "02", "03", and "04" added to the identifier giv-
ing the names "AM93101", "AM93102", "AM93103", and "AM93104"
to the actual description saved in the tables during
compilation. If the length of the name is already twelve
(12) characters, the last two characters will be replaced.
Very likely there will be several "CONTAINS" clauses.

LEVEL: BOX1 CONTAINS PCBl, PCB2, PCB3, BPLANEl:;
BOX2 CONTAINS PCB4, PCB5, PCB6, BPLANE2.

Note the semi-colon at the end of the second line. The
is only used at the end of the statement. The user, how-
ever, could have written two statements for the description

as shown below:

LEVEL: BOX1 CONTAINS PCBl, PCB2, PCB3, BPLANEl.
LEVEL: BOX2 CONTAINS PCB4, PCB5, PCB6, BPLANE2.

At the completion of the hierarchy statement descriptions,
the elementary items still remain to be described as either

page 9
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peripherals, memory, components, or conductors. Each of
these elementary items must be fully described as shown in
the syntax examples in sections 3.5 through 3.7.

Once the system design is complete, the heirarchy, including
the connectors, should be entered and checked against the
output table from Simcal, the software support system. Some
users may prefer to check the hierarchy of the design prior
to entering the detailed descriptions of the chips and
buses. This is done by compiling the design and requesting

the hierarchy tables.
3.3 THE COMMENT STATEMENT

Comments may be placed anywhere within the CALSIM code by
entering "/*". The comment may be terminated at any point
by "*/". The compiler wiil recognize the symbol "/*" as the
beginning of comment and will continue to ignore text until
the comment termination symbol "*/" is scanned. Thus sev-
eral lines of comments require only a single beginning and a
single ending symbol as shown below.

LEVEL 3: TOP-CONSOLE CONTAINS /* AN INSERTED COMMENT
IS IN THE MIDDLE OF THIS STATEMENT */ AA, BB.

3.4 THE TIMING STATEMENT

The timing statement places upper bounds upon each of the
timing segments in the simulated machine. The clock may
have up to eight segments, each of which may have any value
from O +through 9. In the following example, the first six
segments, of a possible eight (8), are used and the values
within each segment may have any value not greater than the
digit shown. The total time events available to the designer
in this example, is 4 X 3 X 10X 1 X 5X 2 = 1200.

CLOCK LIMIT IS 3:2:9:0:4:1.

By setting the upper limit on the clock, the user causes the
compiler to check each of the time clauses submitted, as
part of an elementary item description, to assure that no
segment value is greater than that allowable. During simu-
lation, the sequencing of the component execution will be
controlled by the time clauses provided in the elementary
item descriptions which allows the user to repeat cycles and
perform concurrent operation. See section 3.14 for a
discussion of timing clauses used in the item description.

page 10
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3.5 THE CONNECTOR DESCRIPTION STATEMENT

The connector description statements generally, but not
necessarily follow the heirarchial statements and provides
the system with the wire names and numbers within the con-
nector. The wire numbers may be as high as 999 and names
may have up to 6 characters. The connector statement does
not concern itself with the external connections of the bus,
cord, or cable, only the wires in the connector and their
related names. The statement must start with either "Cord:"
"Bus:" or Backplane:" which are actually equivalent to the
compiler and are provided for user convenience only. An ex-
ample follows:

CORD: CORD1 IS NUMBERED (1-18).
BACKPLANE: BIG-PLANE NUMBERED (1-256).

The verb "IS" is optional and the value "(1-18)" represents
a range. The names of the connectors were not included in

the example above, but could have been added to the descrip-

tion as . The "AND" and the spaces following the
coﬁga a§§°w89 fggal. If fewer names are entered than num-

bers, the system provides a warning, but the numbers and
names provided are compiled.

CORD: CORD1 NUMBERED (1-18) AND. NAMED PRW, D1, D2,
D3, D4, INT, GWD.

It is necessary that all components - memories, peripherals,
and LSI's be completely connected using this statement.
Calsim does not permit testing (of a register content or
value on a pin) in one chip to result in an action in anoth-
er chip. Such action must be done by passing the signals
through a connector and using logic in a second item to
complete the action. Actions within an elementary component
are carried out, however, without the details of the wiring
within the chip being described. While it is wusually ex-
pected that a complex chip (such as the AMD-2901) will com-
prise the elementary level, such chips may be considered a
group item, i.e. they may be broken into smaller parts. In
the latter case, of course, the component parts must be con-
nected to each other with a bus.

3.6 THE MEMORY STATEMENTS

The system provides up to five memories which can be used as
read only or random access and may be copied from an

page 11
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existing file. The memory size clause is shown first in the
examples and the remaining clauses used in the memory
statement -- PIN, REGISTER, TIME, IF, ON PULSE, will be
discussed in section 3.15 since their form is common with
several other statements. In the examples which follow, the
clauses are placed in proper order. Note that memory may be
addressed directly or the address may be given on the pins.

MEMORY: MMEM SIZE = 2048 X 8;

PINS ARE NUMBERED (1-42) AND NAMED D1,D2,D3,D4,

D5,D6,D7,D8,ADR1,ADR2,ADR3,ADR4 ,ADRS5, ADR6,ADR7,

ADRS,ADR9,ADR1O;

REGISTERS ARE ABC (16), DEF (24), GHI (8, 16):

TIME = 2:1:3:4:2;

IF PINS (1-3) EQ 131Q THEN MEMORY (PINS(16-24))
= PINS (4-6):;

TIME = 2:1:3:4:3;

ON PULSE MMEM (672) = PINS {25-~32).

MICROMEM: MICROM SIZE = 12 * 64; PINS NUMBERED (1~80);
AND NAMED D1,D2,D3,D4,D5,D6,D7,D8,D9,D10,D11,D12,
p13,D14,D15,D16,D17,D18,019,D20,D21,D22,D23,D24,
D25,D26,D27,D28,D29,D30,D31,D32,D33,D34,D35,D36,
D37,D38,D39,D40,D41,D42,D43,D44,D45,D46,D47,D48,
D49,D50,D51,D52 D53 D54 D55 D56 D57 D58 D59 D6O,
p61,D62,D63,D64,A1,A2,A3,R4,A5,R6,A7,A8,A9,A10,
All,Al2,RD1,CNT1,PLUS,GRND;

REGISTER MAR (1-16), SPCREG (1-10):

TIME = 4:2:0:4;

IF PIN 2 EQO 1 AND PIN 22 EQ 1 THEN PINS (D1, D2, D3,
D4, D5, D6, D7, D8) = MEMORY (PINS (9-16)):

ELSE MEMORY (PINS (9 - 16)) = PINS (1 - 8).

3.7 THE PERIPHERAL STATEMENT

The peripheral statement describes a port, terminal, or
other input/output device. The statement contains the for-
mat clause which is unique to the peripheral statement and
uses all of the clauses which are common to logical device
descriptions, explained in section 15. At the user's
option, the data passing in and out of a peripheral may be
taken from or sent to a file. This is done in the simula-
tor, not in the hardware description, by "tieing" the per-
ipheral to a work file as explained in section 6.9.12.

I-0: TERMINAL1 PINS NUMBERED (1-22);
FORMAT BINARY;
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REGISTERS ARE KEY-CD (10), KEY-CD2 (19);

The peripheral statement has a special form for the replace-
ment expression which is part of both the "IF" and the "ON
PULSE" clauses. In the peripheral statements, the reserved
words INPUT and OUTPUT are substituted for the appropriate
side of the expression. Note that ‘'OUTPUT' displays the
value at the terminal, with allocation of bits starting on
the right. When "INPUT" is encountered during simulation,
the system will wait for an appropriate input from the term-
inal after displaying a message requesting input.

TIME = 6:3:1:0:4:1;
IF PIN (7) EQ 1 AND PIN (8) EQ 1

THEN OUTPUT = PINS (11-18).
IF PINS (7-8) EQ 01B THEN PINS (11-18) = INPUT.

Since data must be in ASCII format to be displayed on the
user terminal, and ASCII format is received from the user
terminal, ccnversion to/from ASTII is reguired if +the Jdates
is to be legible to the user. In the user's object machine
the data may have a wide variety of formats. Simcal pro-
vides conversions at input/output time (to the user's termi-
nal) for several of these. The data format determines the
number of bits used +to form a character at the terminal
during an OUTPUT operation and the number of stored bits
resulting from an INPUT operation. Binary will use one bit
per character; octal will use three bits; BCD and HEX will
use four bits per character; ASCII and EBCDIC will require
eight bits per character. On input, a data item described
as binary will convert each input character (must be a 0 or
1) to a single bit for storage. On output each bit is
converted and displayed as a zero or one.

If the format is ASCII, then each eight bits will be used to
form a character on the screen on output; fragments will be
disregarded in this case. On input, the system will be ex-
pecting an input character for each eight bits or part of
eight bits. If the input is binary then the user should
enter a 0 or 1 for each bit position followed by a carriage
return. If the pins or register length is not an even
multiple of the format requirement, allocation to the
character will start on the right (usually the low order
‘value) and proceed to the left. The right side is
considered to be the higher numbers in the pin expression.
e.g. in the expression "PINS (4-10)", pin 10 would be
considered on the left side. The available formats follow.
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BCD On entry, a character will be converted to 4 bits.
on display, 4 bits are used to form 1 character.

GRAY Converted to and from the gray scale.
OCTAL Converted to/from octal code, 3 bits/character.
ASCII These values will be sent/received as they are.

EBCDIC Converted to and from the Extended Binary Coded
Decimal format, 8 bits per character.

BINARY The data will be broken into a series of zeroes
and ones when displayed. On terminal entry,
sufficient ones or zeros are expected to fill
the request. If less are received, the high
order (left side) will be padded with zeroes.

P

PCKED-DEC Converted to/from the packed decimal format.

HEXADECIMAL Data will be displayed as its hexadecimal
representation, and when received from the
terminal the hexadecimal will be converted
using 4 bits for each character.

3.8 THE COMPONENT STATEMENT

All items at the elementary level not described as conduct-
ors, peripherals or memories must be described as compon-
ents. The memory and peripheral statements are really
special forms of the component statement using all of its
syntax plus an additional clause in each case. The compo-
nent statement is made up of the common clauses which are
described in paragraph 3.15. An example follows, 1listing
these clauses in correct order and followed by an actual

example.

CHIP: CHIPNAME
PIN DESCRIPTION CLAUSE;
REGISTER DESCRIPTION CLAUSES;
TIMING CLAUSE; LOGICAL ACTION CLAUSES:;
TIMING CLAUSE; LOGICAL ACTION CLAUSES;
TIMING CLAUSE; LOGICAL ACTION CLAUSES.

CHIP: FD14 PINS ARE NUMBERED (1-42);
REGISTERS ARE A(8), B(8), Cc(8), MRR (16, 16):
SUBREGISTERS OF F ARE SIGN, ZERO, F3(3), F2, Fl;
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CASCADE H, L, INTO HL; CASCADE B, C, INTO BC;
TIME = 2:1:7:3:4:0;

ON PULSE PINS (12-14) = O.

IF PINS (1-8) EQ 10010001B THEN A = A + B,
ELSE PINS (1-8) = 4BH;

TIME = 2:1:8:0:1:4;

IF PINS (1-8) <451Q THEN A = A - B;

TIME = 3:4:2:1;

IF A EQ B THEN PIN 4 = 0 ELSE PIN 4 = 1,

3.9 THE WIRING STATEMENT

The wiring statement provides the logic path between various
components. BUSl, in the éxample below, 1is connected to
several terminals, each connection being treated individual-
ly with a clause, or a series of individual statements. 1In
the case of connectors, the number refers to the wire number
and in the case of the component the pin number.

Note that as BUSl is connected to each item that only those
items of concern are listed. The order of the wire and pin
numbers is of no consequence, only the mapping of one onto
the other. Each list is enclosed in "<...>", and a range is
enclosed in "(ann)". Several connections can be made using
a single or series of statements can be used as shown below:

CONNECT BUS1 TO BOARD1{(1-120)}{(5-95) 3,1,2,(96-120)1};
TO BOARD2 {(1-95)} {(1-95)1};
TO BUS2 {6, 19 (22-25)} {(1-6)1}.

CONNECT BUS1 TO BOARD4 {(21-120)} {(1-100)}.

CONNECT BUS1 TO BOARD5 {(25-50),57 62 (81-89)}{(1-37)1}.

3.10 THE STORE STATEMENT

The store statement allows the user to store syntactically
correct statements in a personal library on the DEC-20, thus
providing assistance for those statements which involve many
lines of code and significant amounts of preparation time.
The user must first choose a suitable library name for each
item to be stored, which may be the same as the chip name or
entirely different. The library names may have up to 30
characters, beyond which they are truncated, while component
names are limited to twelve characters. The first and last

lines of the store sequence are shown in the example.

The description, including timing, is placed in the library
during compilation prior to use in the copy statement, al-
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though timing may be modified when the item is copied. If
an error occurs during the process of storing the statement,
the store operation is halted and the partial description is
deleted. Since an entry with an already used name will not
cause deletion of the old description. The user must first
delete the o0ld name from inside the library module. The
library is primarily intended for storing (and using)
descriptions of chips, but may also be used for assemblies.
An example follows.

STORE AS AMD-9301-BIT-SLICE-CPE.

The description of the component goes here.

END OF AMD-9301-BIT-SLICE-CPE.

The user may not wish to bother with timing when the unit is
placed in storage since the timing will probably be differ-
ent at the time of use than would be entered in the descrip-
tion. To avoid this the user can enter "TIME = *;" for the
time. When the items are withdrawn, the correct time must

be substituted in the description.

3.11 THE COPY STATEMENT

The copy statement is used to retrieve one or more copies of
item descriptions from the user's library, making timing
corrections for insertion into the code being compiled.
Where a single copy is needed, the syntax is:

CQPY AMD-9301-BIT-SLICE-CPE,
TIME = 1:3:2, 1:3:8, *:*:2,

In this case the item stored as "AMD-9301-BIT-SLICE-CPE"
will be retrieved and will be compiled as if the code were
in the incoming hardware description. If either the
requested name is not found in the library, or the modified
name is not found in the hierarchical description an error

message will result. Since the syntax of the stored item
was checked when placed in the library, there should be no
syntactical errors. The four time slices shown in the

example (between 1:3:2 and 1:3:8) will be substituted for
the times found in the item description in the library in
the order shown. If the description contains fewer or more
than four time increments, an error message will result.

When there are several of the items required in the design
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of the object machine, it will be necessary to add suffix
numbers to the identifiers to make these names match the
names originally entered in the hierarchy statement. The
copies required will be entered and the compiler will then
provide the suffix numbers. The entry is as follows:

COPY 2 EACH AMD-9301-BIT-SLICE-CPE,
TIME = 3:6:0, 3:6:6, *:*:2; TIME = 3:7:0, 3:7:3.

The above statement will cause the compiler to copy the des-
cription of the chip from "AMD-9301-BIT-SLICE~-CPE", attach
"O0l" and "02" to the identifying number, (unless these have
already been used), and apply the two time replacements to
the copied items. The times on the first item copied will
be 2:6:0, 2:6:2, 2:6:4, 2:6:6. The times on the second item
will Dbe 3:7:0, 3:7:1, 3:7:2, and 3:7:3. The user should be
sure the revised names exactly match those already entered

in the hierarchy statements.

In addition to the method described above, the user may also
suffix his own 2 letter (or number) designation to the
embedded name or replace the name with a new one. This
example shows an increment of 3 units in the time setting.
The compiled name will be the identifier found within the
library description with the "AB" attached and in the second
case the new name, "ABC" will be substituted.

COPY 1 EACH AMD-9301-BIT-SLICE-~-CPE SUFFIX AB,
TIME = 2:3:6:0, 2:3:7:2, *:%:%:3,

COPY 1 EACH AMD-9301-BIT-SLICE-CPE REPLACE WITH ABC,
TIME = 2:3:6:0, 2:3:7:2, *:%:%:3,

In the use of STORE and COPY the user should carefully dif-
ferentiate between the library name, the name stored within
the library description and the name following compilation.
e.g., the name above, AMD-9301-BIT-SLICE-CPE, is the 1lib-
rary name not the name of the component. If the stored name
were "AMD-9301", then "“AMD-9301AB" would be the compiled
name. The addition of suffixes must be carefully coordinat-
ed with the descriptions previously provided in the hier-
archy statements so that spelling of the names are the same.

In some cases, the user may wish to add the code from the
library to the hardware description file so that the de-
scription file, while longer, is self-contained. This may
be done in one of two ways. The first method uses the TOPS
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facility to copy the material from the library file into the
hardware description file. The DEC manual should be
consulted for a full description of this method.

The second method uses the Simcal system and is implemented
as follows. Include the COPY statement in the hardware
description at the-proper location. When turned on, the
SIMCAL.PRT file will contain the original description and
code as it is copied, including error messages if any. The
user may then enter SIMPRT.DAT after leaving the executing
Simcal and "clean up" the file renaming it SIMHDW.DAT.

Copy statements may not appear in the items stored in
the library. The user may work around this, however, by in-
cluding the copy statement as a comment. After the first
level is copied into the save file, the comment delimiters
are removed and the the description is compiled again. This
can be repeated to any depth desired.

3.12 THE NUMBERING SYSTEMS AVAILABLE FOR USE

The values to be stored on pins or in registers may be ex-
pressed in binary, octal, decimal, or hexadecimal. Only
decimals may be used for other application such as pin,
wire, or register number. The following symbols will be
recognized by the software support system for values
actually on the connectors and in register and memory of the
object machine. Only - decimals may be used for other
purposes such as index values.

00010101B (binary)

49270 (<--OH, not ZERO) or 49270 (octal)

8245 or 8254D (no symbol will be treated as a decimal)
OACE348H (hexadecimal, the value must start with a digit)

3.13 THE START STATEMENT

The start statement is used to set starting values in regi-
sters, memories, pins and/or buses so that the machine will
have proper values stored at actual simulation beginning.
In the example, zeroes are placed in the recorded values of
the named components and the clock is set to zero. The user
should place this statement last to assure that the named
components have already been compiled. Once simulation is
performed, the values are destroyed, but may be easily reset
by entering "START" in the simulation environment. Any
legal number, octal, hexadecimal, decimal, or binary is
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permissable to specify the values.

START: ADRBUS=0; ABCD = 1010B; REGC = OAFH;
CNTL6 = 1; RD =1; TIME = 0:0:0:0:0:0:

3.14 CONTROL OF TIMING

Simcal requires that a time slice be assigned to all logical
actions which take place in either the memory, peripheral or
component statements. The clock used is broken into eight
(8) levels,; each of which may be any value from O through 9,
with the larger segments on the left and the smaller seg-
ments proceeding to the right. A colon separates each seg-
ment. It is not necessary to use all eight (8) segments;
use only sufficient number to meet the need for the system
being described.

Before a logical action 1is described within a component
statement, a time for the action must be assigned. While
compiling, this time will remain constant, until changed by
another time clause entry but each component must have a

time clause before the first logical clause. Actions in
different components, which have the same time assigned are
presumed to be running in parallel. In actual simulation

they will be executed in the order entered.

When items are being sent to the library and the time of use
is unknown, or partly unknown, an asterick may be substi-
+tuted for one or more digits, e.g. "*", "5:6:2:*:*", and
"*¥:2:1" are all acceptable for library storage. The user
resets the segments when copied from the library. An
asterisk is used in the areas to be copied from the file and
numbers where values are to be inserted. In most cases the
user will show the same number of segments in the copy
statement as are in the original description. If they
differ, however, the system wiil accept the value but

provide a warning message.

CONCURRENCY: To assist the user in simulating concurrency,
Simcal will not transfer internal values onto the connectors
unless both of the following conditions are met:

A TIME CHANGE OCCURS.
SIMULATION IS PASSED TO THE NEXT COMPONENT.

When both of these conditions are met, the simulator then
moves the value from the pins to the conductor and resets
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all pins in all components connected to the conductor. I1f
conflicting values have been provided during a single time
period, the simulator will "break" and warn the user of the
conflict. Thus, if components A and B have changed pin
values to wire N during period X, one being high and the
other 1low, the result would be unpredictable in the hard-
ware, hence the simulator will issue a warning. The user
may supply a value for the wire during simulation but he

should also correct the design problem.
3.15 COMMON CLAUSES AND EXPRESSIONS

The following clauses are used to describe 1logical compon-
ents, memories, and peripherals.

3.15.1 PIN CLAUSES

The PIN clause provides the compiler with the number of pins
on the component and allows the user to also enter names for
the pins. 1Its form is similar to the connector statement as
shown in the following example. The pin numbering must
consist of a range starting with the number one and not
exceeding 999. The names are optional, may have 'up to six
letters or numbers, however a warning is displayed if par-

tial name lists are supplied.

PINS ARE NUMBERED (1-64) AND NAMED Al, A2, A3, A4;

3.15.2 REGISTER CLAUSES

The grammar provides capability to define a single or a
group of registers, to cascade registers into longer regi-
sters and to define portions of registers as subregisters.
The first value within the parentheses following the
register name always represents the length in bits, the
second, if present, shows the number of registers in the
group. The upper limit on bit length is 99 and the maximum
number of registers is only limited by storage in the soft-
ware support system. Examples follow of register defini-
tion, cascading, and creation of subregisters.

REGISTERS ARE SP (16), GENPP (8, 8), H(8), L(8), F(8);:
CASCADE H, L INTO HL;

SUBREGISTERS OF F ARE SIGN, ZERO, F5(3), F2, Fl, FO;
CASCADE HL,F1 INTO HLR:

3.15.3 TIME CLAUSE
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The time clause assigns a specific time slice for a series
of events to occur within a component and therefore must
preceed the the description of the logical action to take
place within the chip. When the order of events are of no
consequence within the chip, a single time clause is ade-
quate, and the events will be carried out in the order ent-
ered. However the user should realize that during simula-
tion, breaks can only occur at the completion of the opera-
tions for a given time slice or for a given component. e.g.
the time "2:3:4:5:6:0:0:0" may be set aside for a given
component with several operations. The user may further
divide the last three areas into a group of two, further
divided into a group of five and then a group of two. All
of the possible segments may not be used. The description
might be as follows.

CHIP: EXAMPLE

TIME = 2:3:4:5:6:0:0:0;

Logical descriptions A goes here.
TIME = 2:3:4:5:6:0:0:1;

Logical descriptions B goes here.
TIME = 2:3:4:5:6:0:1:0;

Logical desriptions C goes here.
TIME = 2:3:4:5:6:1:3:1;

Logical descriptions D goes here.

The user is now able during simulation to "break" following
any of the four sets of operations and examine the value of
pins or registers. If another item had also been given the
same time, then +the breaks could have been made following

either component.

3.15.4 LOGICAL ACTIONS - THE CONDITIONAL EXPRESSION

In the simulator, logical action may be executed as the
clock reaches a certain time, explained in the "ON PULSE"
expression, or at a certain time events depending on the
outcome of a conditional expression. The conditional ex-
pression, starts with "IF", may be followed with an ELSE
clause. The IF~ELSE clauses however, may not be nested.
The values on the pins or registers may be checked using the
following series of relational operators:

EQ NOT EQ < NOT < > NOT >
Note that the "=" sign is reserved for the assignment
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function and the 'EQ' must be used as a conditional. The
values on either side of the relational operator may be
either a numeric value (in binary, octal, hexadecimal or
decimal), a set of pin values, a register value or a memory
value. If pins are to be checked, then the user enters
"PIN" or "PINS" followed by either a single number (decimal
only) or a range enclosed in parentheses. The decimal val-
ues which follow the register names or the reserved words
"PIN" and “"PINS" will cause the simulator to determine the
values on the pins and test them against the values on the
other side of the relational operator. Several forms of the

expression is shown in the example.

IF 120 EQ HL THEN ... (where HL is a register)

IF PINS (42-49) EQ OFFH THEN...(the value on pins 42-49
must all have a value of 1 for the test to be true)

IF HL EQ PINS (1-16) THEN ... “

IF PIN 21 NOT EQ O THEN... .

IF PIN 21 EQ 1 THEN ...
IF PINS (30-34) 0 HL... (ns good, not the same length)

IF PINS (4-44) 2Q l... (numzrics padded with 0 on left)
IF H(4-8) EQ 12H THEN ... (A portion of H is tested)

e

3.15.5 LOGICAL ACTIONS ~ BOOLEAN EXPRESSIOK

Several of the conditional expressions may be' combined to

form a Boolean expression. Simcal’  allows the 'use of
parentheses and operator precedence is that usually found in
programming languages. The ascending order is: NOT, AND,

OR. Examples of their use follow.

IF PIN (5-8) EQ 1010B OR PINS (5-8) EQ 1011B THEN ...

IF NOT (PIN 4 EQ 1 AND PIN 33 EQ 1) THEN ...

IF (HL EQ OABH OR PIN 14 EQ 1) AND PIN 16 EQ 1 THEN ...
(pin 16 must be true for statement to be true)

IF PIN 5 EQ O AND PINS (20-27) EQ OBCH THEN ...

3.15.6 LOGICAL ACTIONS - THE ON PULSE CLAUSE
The system allows the user to execute an action each time a
time setting for a logical device is reached by using the
words "ON PULSE" rather than checking the condition on a pin.
or in a register. The reserved words "ON PULSE" are substi-

tuted for the relational expression from "IF" through
"THEN". An example follows.

ON PULSE ... replacement expression;
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3.15.7 LOGICAL ACTIONS - REPLACEMENT EXPRESSION

One or more replacement expressions, separated by commas,
may follow "THEN" or "ELSE" of the conditional expression or
the reserved words, "ON PULSE". The memory statement and
the peripheral statements allow operation on the data as
well as the replacement of data. The replacement expression
uses the "=" sign to assign a value to the register or the
pins on the left of the equal sign. If the 1length of the
fields on the right of the equal sign are not of the same
length an error will result. However numeric values used in
the expression need not be padded with leading zeroes. The
replacement expression can be used to move values and to
logically manipulate the data as illustrated below.

... PINS (1-8) = REGA, PINS (31-46) = SP;
... A=A+ B, PINS (1-8) = A; PINS (9-10) = A - B:

There are fifteen operators available, nine using two oper-
ands and the remaining six using a single operand. The
operators using two operands follow.

+ - * / AND OR XOR NOR NAND
The operators using a single operand are:

SL SR RL RR CMP NEG

All of the operators presume that the data format is binary,
that is the values are simply strings of ones and zeros.
Formats such as twos complement, or floating point must be
"built" by the user. The operator, "CMP" when used will
simply take a value and complement it, "Negate" will convert
the number to it's twos complement value. The dyadic
operators have the usual meaning, the monadic operators are
shift 1left, shift right, rotate 1left and rotate right,
complement, and negate. The vacated positions are left as
is. The operations are performed in order from left to
right, without operator precedence but the order may be
modified by the use of parenetheses.
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4.0 THE CALSIM GRAMMAR

The formal grammar for the CALSIM language may be obtained
by entering the table section of Simcal and entering "BNF".
The serious student will request a copy and use it as a
guide in preparing his descriptions. The grammar was devel-
oped using an LALR analyzer by LalLonde from the University
of Toronto. The grammar provides starting and ending state-
ments of the hardware . description and uses a series of
statements between these to specify the hardware components,
connections and logical actions. Several of the productions
for statements are listed below, but the reader is referred
to the formal grammar for details of the subsidiary clauses.

<SYSTEM NAME> ::= SYSTEM NAME <IDENTIFIER>.

<END ID> ::= END OF <IDENTIFIER>.
<STATEMENT> ::= <STORE STMNT>.

| <COPY STMNT>.

| <HIERARCHY STMNT>.
<CONNECTOR STMNT>.
<CLOCK STMNT>.

| <MEMORY STMNT>.

~ <PERIPHERAL STMNT>.
<COMPONENT STMNT>.
<WIRING STMNT>.
<START STMNT>.

Clauses are provided with the hierarchy statement for a
series of "LEVEL" expressions. The "CONNECTOR" statement
provides clauses for both numbers and names of the individ-
ual wires within a connector. The components at the lowest
level can contain logical action and include the MEMORY,
PERIPHERAI, and COMPONENT statements each of which have sev-
eral clauses. These include the PIN, REGISTER, IF, ON
PULSE, and TIME clauses. The PERIPHERAL statement also uses

a FORMAT clause.

Since changes in grammar may occur, it is advisable to note
the version number of both the software and the grammar when
entering Simcal. While Simcal may be changed when there is
no change in the grammar, a change in the grammar will
almost certairly result in a change in the software. The
current version of the grammar is printed on entry to the

system.
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5.0 PREPARING THE DESIGN AND HARDWARE DESCRIPTION

5.1 THE VARIOUS USES FOR THE CALSIM/SIMCAL SYSTEM
The Calsim/Simcal system may be used in a variety of ways
from elementary circuit studies to various aspects of bit

slice design studies. Suggested uses are shown below and
examples of these uses will be found in the Appendix 3.

* gtudy of basic component operation, such as flip-flops,
adders, multiplexers, latches and registers.

* More complex items such as shift registers, decoders,
UARTS, and programmable interface chips.

* study of major portions of a circuit such as the ALU.

* Representation and simulation of CPU chips such as the
8080, Z80, DEC-11, Zz8000, or 6800.

* gtudy of the operation of a set of chips to perform
microprogrammable operations such as the AMD-2900 series.

* System development using microprocessors.

* Verification and proving a hardware design.

* Assisting development of microprogrammable instructions.

5.2 DISCUSSION OF EXAMPLES

The series of examples progress from a simple £lip-flop to
complex logical devices. Each of these may be tried in the
machine and are available to the user through the TOPS en-
vironment by requesting <CS.Bnnn>SIMHDW.DAT. The unwanted

items can then be deleted from the file. The student should
start with the more simple circuits. Each example in the

Appendix includes:

1. A description of the machine including a diagram.

2. The Calsim program listing produced at compilation.
Each example can be used to increase the students
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understanding of computer organization while learning to use
the Calsim/Simcal system.

5.3 PREPARING THE DESIGN AND BLOCK DIAGRAMS.

The first step is to prepare a block diagram of the machine,
being careful that all of the connectors between components

are detailed. Be sure that a clear definition of the pins
on each component and the registers in each chip are
defined.

In most cases the chip descriptions will not contain a defi-
nition of any working registers not available to the user,
however this should not deter the user from creating such
registers if it makes the job of logic execution easier.
CPU chips commonly contain working registers not shown in
the manufacturers literature since they are of no interest
to +the user. It may also be advantageous to group the com-

ponents prior to beginning the actual entry.
5.4 PREPARING DESCRIPTIONS FOR PERSONAL LIBRARY.

If the design contains more than one of a single chip, it is
probably better to write the description of these chips
first and place such items in the library. This is done by
entering only the chips to be stored immediately following
the system name statement. Caution -- the Simcal system
must have the system name statement at the beginning of the
description or it will not operate properly. When the chips
to be placed in the library have been written and debugged,
they can either be entered in a run prior to the point of
use or can be entered as a separate run. If part of the
same run, it is best to use the "store" statement just after

the system name.
5.5 PREPARING THE CALSIM DESCRIPTION.

When the system under study is fully designed, the
description should be written in the order shown here. If
another order is used, the description may be satisfactory
even though in most cases, error messages will result.
These messages may be true at the point written, Dbut
corrected in subsequent descriptions, however the system
does not check for this. The recommended order is:

SYSTEM NAME STATEMENT.(Required to be the first statement)
STORE STATEMENTS.
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HIERARCHY STATEMENTS STARTING WITH LEVEL 1.
LEVEL 2 HIERARCHY STATEMENTS, LEVEL3, ...
CONNECTOR STATEMENTS.

TIME STATEMENT.

MEMORY, MICROMEMORY, AUXILIARY MEMORY STATEMENTS.
SIZE CLAUSE;
PIN CLAUSES;

REGISTER CLAUSES;
TIMING/LOGICAL ACTION CLAUSES:;

PERIPHERAL STATEMENTS.
FORMAT CLAUSES;
PIN CLAUSES:;
REGISTER CLAUSES:
TIMING/LOGICAL ACTION CLAUSES;

COMPONENT STATEMENTS.
PIN CLAUSES:
REGISTER CLAUSES;
TIMING/LOGICAL ACTION CLAUSES:

WIRING STATEMENTS.

START STATEMENTS.

SYSTEM END STATEMENT.

END OF DESCRIPTIONS STATEMENT.

5.6 COMPILATION AND TABLE EXAMINATION.

Be sure the file containing the description has been named
SIMHDW.DAT and on leaving the file, the file is closed with
"EU", leaving the file unnumbered. Compilation will not be
performed on a numbered file. If compilation is performed
at a terminal, copies of the output may be retained by use
of "PHOTO" on the DEC system or by use of SIMPRT.DAT which
is part of the Simcal system. When compilation 1s error
free, the tables should be requested and examined to assure
the organization is that expected. Entry of "ALL" in the
"PAR" environment will list all of the tables of interest.
Read-in of memory content is performed next followed by

simulation.

5.7 PREPARING PROGRAM, MICRO AND OTHER MEMORY CODE.
The program code must be prepared from whatever resources
the user has available. It is suggested that the output of
the assembler be saved and the code be manipulated into the
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pattern described here. The format for Simcal is as
follows:

ADDRESS IN HEX SPACE 64 CHARACTERS (32 BYTES)

The Simcal system will accept each line independently of the
others, allowing the address to start at any point. If the
address of the 1line is exactly 32 bytes greater than the
address of the preceeding line, spaces can be used in the
address location and the system will calculate the address.
The addresses outside of those established during compila-
tion will result in an error. The memory code is entered
following ‘compilation and should specify the same memory
size as that given in the hardware description. Simcal
reads the memory from the file until either reaching the end
of the file or satisfying the requested amount of storage.
If the requested amount of storage and the file length are
different an error message will result.

The micro and auxiliary codes are entered as a string of
binary characters starting at zero position. The entire
micromemory need not be filled. but the entry must be no

more than 99 columns.
5.8 OBTAINING THE STATUS IN THE SOFTWARE.

At the entry level to Simcal, determine that all is ready to
simulate by entry of "STATUS". This will show the status of
memory file entries and compilation and will remind the user
of items which may have been forgotten. An example follows.

> STATUS <CR>
SYSTEM STATUS:
COMPILATION COMPLETE WITH NO ERRORS, 5 WARNINGS.
MAIN MEMORY READ IN.
NO MICROMEMORY READ.
NO AUXILIARY MEMORY READ.

5.9 SIMULATION.

Prior to the use of the simulator, section 6 of this manual
should be carefully studied followed by simulation of one of
the simple devices found in the examples. Without a basic
knowledge of "MENU", "DISPLAY", "BREAK", "STEP", "RUN" and
other terms, the simulation will be meaningless. When fa-
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miliar with these terms and their use, develop a test plan.
This usually is step-wise detailed listing of the checks
which are to performed starting with a top-level verifica-
tion and working downward.

The student is cautioned against using an ad hoc plan of

testing in which he starts simulation and "tries it out".
This approach to testing provides little assurance beyond
that of knowing that the system will actually run, but more
frequently the system will not run at all and this produces

discouragement.

On entry to the simulator, the user will receive the "SIM>"
prompt showing that the simulator driver is awaiting a com-
mand. The user should select the "MENUS", "BREAKS", and
"DISPLAYS" with care. The maximum interval should be set
fairly short and a step-wise execution tried. The following
is suggested as an orderly approach to carrying out simula-
tion:

1. Carefully plan the action to take so that the
testing is top down. The first action will be to
determine if the machine can "stay alive". Tests
of more detail are then planned, taking one section
of the hardware at a time.

2. Select the values you will wish to display, and
place the items in groups using DEFINE MENU.

3. Select the component/time when these groups of
items will be displayed while simulation is
proceeding. Use the DEFINE DISPLAY to record the
selection.

4. Select the component/times when breaks will occur
and the menus which will be displayed. Use the
DEFINE BREAK command to record the selection.

5. Set the maximum +time increment to activate the
automatic break.

6. Print the 1listing of menus, displays, and breaks
and modify as required.

7. Try to execute a few steps at the highest level in
the system.
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8. Follow the written test plan using a terminal with
a printer (or using PHOTO) so a written copy will

be available.

9. When errors are discovered be sure that they are
carefully recorded. Try to duplicate the error.

10. Develop the corrective action carefully in
~riting.

11. Carry out the corrective action detailing each
action taken and recording all anomalies.
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6.0 USING THE SIMCAL SOFTWARE SUPPORT SYSTEM

6.1. SYSTEM ENTRY

The user begins a session by entering from the terminal:

TAKE SIMCAL.CMD <CR>.

The command file then binds the support files to a copy of
the SIMCAL object file (SIMCAL.REL) which is copied from
<CS.Bnnn-mm> and starts system execution. On entry, the
version number of Simcal is displayed and the user is given
an opportunity to display and read a brief set of instruc-
tions. At the entry level, as at all levels, the user has
both "HELP" and "?", unique for each environment, available
to obtain either an explanation of the environment or a list
of commands acceptable in the environment. The commands

available at the entry level of Simcal are:

HDW (HARDWARE compiles the user's design into tables).
TAB (TABLES is used to print tabulations of hardware).
PGM (PROGRAM is used to read the user's program code).
MIC (MICROCODE is used to read the user's microcode).
AUX (AUXILIARY is used to read other memories).

LIB (Provides access to saved hardware descriptions).
DOC (DOCUMENTATION provides access to documentation).
STA (STATUS lists the status of the system).

SiM (SIMULATE is used to enter the simulation driver).
HELP (HELP at top level an overview of SIMCAL).

QUIT (QUIT returns the user to TOPS level of DEC-20).

? (Prints commands available in entry area).

5.2. ACTIONS IN SIMCAL PROVIDED FROM THE DEC-20 SYSTEM
The rubout and all of the control commands available at the
TOPS level and inside the DEC editor are also available in-
side of Simcal. Several control commands available are:

CNTL C Interrupts program action, returns to TOPS.

CNTL O Stops the display, program execution continues.
Also restarts the output to the terminal.

CNTL S Stops the program (so screen can be read).

CNTL QO Restarts the program (used with CNTL S, above).

CNTL U Deletes the entire line being entered. ,

CNTL W Deletes the last word entered.
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CNTL R Rewrites the line being entered.
CNTL T Provides status of the executing user program.

The DEC-20 utility PHOTO may be used to record the output to
a user's terminal onto a user named file. This is done at
the TOPS 1level by entering "PHOTO" and providing a file
name. After the session through Simcal, the user again
enters "PHOTO", ending the recording session and making the
user named file ready for use. The data can then be 1listed
offline or read at the terminal at a more leisurely pace.

6.3 USING THE COMPILER

The compiler environment is entered from Simcal by entry of
"HDW" The user wishing to compile the hardware file enters
the following: "C,P <CR>". Following this the machine will

take two actions:

(1) Locates a file of the CALSIM grammar in <CS.Bnnn>
library. This file is named SIMLLR.DAT and is read

by Simcal into the user program memory. This will
be done once each time the user enters Simcal. The
grammar version will be displayed as it is read.

- (2) Locates SIMHDW.DAT in the user's workspace, reads
and compiles the description.

CAUTION: SIMHDW.DAT must be UNNUMBERED.

The user may choose, in response to questions, to display
the 1listing and messages or to record the data on a print
file, or do both. If the run contains errors, these must be
corrected in the original text and compilation repeated.

6.4 READING IN MEMORY AND DATA FILES

The format and the method of reading into Simcal the three
types of memcry files has already been discussed in section
five (5). The environments in Simcal used to read the

memory content are:
> PCM
> MIC
> AUX n (n =1, 2, or 3)

This same command is used in all three environments. The
format for starting the read process is as follows:
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PGM> READ
MIC> READ L X W (L = length of file, W = width of file)

AUX> READ L X W

6.5 USING THE LIBRARY OF COMPONENTS
6.5.1 LIBRARY ACTIONS WITHIN THE COMPILER

When the user has determined the components which will occur
in hic design, he may start a file of their descriptions.
These should be prepared from the manufacturers data sheet
and checked for correct format through +the compiler. The
user may also wish to simulate the operation of the
component prior to use. When the descriptions are complete,
with no errors, the STORE and "END OF" lines should be added
to each and the descriptions placed in the user's library as
shown below.

SYSTEM NAME STORE-SOME-CHIPS.
STORE AS AM2914ENCDRE /* This is an AMD-2914 encoder */
CHIP: AM2914

PINS ARE (1-40) AND NAMED P3, M3, GAREC, ...

END OF AM2914ENCDRE.
END OF STORE-SOME-CHIPS.
END OF DESCRIPTIONS.

When copies of the encoder are used, the copy statement is
placed in the Calsim description of the hardware at the cor-
rect location. The compiler opens the library file re-
trieves the item, replacing the time as instructed in the
hardware description. If more than one unit is requested,
copies are made for each one requested.

6.5.2 LIBRARY ACTION OUTSIDE OF THE COMPILER

The user may also enter the library environment and check on
the contents of the file. He may ask for a specific item, a
listing of all items, or a complete 1listing of the whole

file.
LIB> LIST <CR> (supplies a list of the items stored.)
LIB> FIND <identifier> <CR> (finds the item if present)
(The user can then either LIST or DELETE.)
LIB> ALL Lists the names and text of all entries.
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LIB> QUIT <CR> (returns to entry level)
LIB> ? <CR> (lists these commands)
LIB HELP <CR> (Explains the use of the library)

6.6. PRINTING TABLES PRODUCED FROM YOUR DESCRIPTION

Compilation produces several tables which are used to drive
the simulator. These tables are formatted and displayed
using the following commands in the "TAB" environment.

HIER A listing of the components in the description
with pointers showing their relationship.

WIRE A listing of the wire numbers and names. The
hierarchy table will have pointers to this table.

REGI A listing of registers in the system.
TIME A table showing the components arranged by time.

SIZE Will show the size of the tables.

LOG Will provide a listing of the logic in the system
arranged by time.

ALL Will print all of the tables listed above.

PROG A listing of the program code read in.

MIFL Will list the contents of the microprogram file.
AUX n Allows tﬁe user to list of an auxiliary file.
HARD Prints the listing of the hardware description.
STAT Status, also available at entry level.

6.7 OBTAINING DOCUMENTATION AND HELP

Documentation may be obtained by entering the "DOC" environ-
ment and executing a request. The documentation may be
printed at your terminal or at the main printer. The com-
mands available follow.

DOC> MANUAL (This manual)

DOC> BNF (Compiler grammar)

DOC> HELP (Explains documentation available)
page 34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com



150

poc> ? (These commands)
DOC> QUIT (returns user to entry level)

6.8 CETTING THE STATUS

The status of the user's actions may be obtained by entering
"STATUS". This tells the user whether he has acceptable
compilation and memory files in place. The user is returned
to the Simcal level after the information is displayed. An

example follows.

> STATUS <CR>
COMPILATION COMPLETE WITH NO ERRORS, 5 WARNINGS.
MAIN MEMORY READ IN.
NO MICROMEMORY READ.
NO AUXILIARY MEMORY READ.

6.9. USING THE SIMULATOR
6.9.1 GENERAL DESCRIPTION OF THE SIMULATOR

Before attempting simulation, the user should be sure that
the following actions have been completed by entering
"STATUS" in either "SIM" environment or the entry level of

Simcal.

A good compilation of the design has been achieved.
The program file has been read into Simcal.

The micromemory file has been read in (if needed).
All required PROMS have been read in as AUXMEMORY.
No conflict exists in memory sizes.

Data files, if required, have been prepared.

A plan for simulation has been developed.

The user enters the driver for the simulator by executing
"SIM" at the entry level. In addition to the simulation com-
mands, the driver will also respond to 'QUIT', '?', and
'HELP'. The latter will show examples of the commands
available within the module if "HELP" is followed by one of
the Simulator Driver command words.

The simulation commands may be divided into three kinds -
those which preset controls prior to simulation, those
concerned with setting and displaying values on connectors
in components, and those causing actual execution to begin.
Following the discussion of protection in the next
paragraph, each type will be discussed in turn. All of the
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items in the following discussion are lost at the end of
each session, therefore the user may wish to keep copies of
the items he has established.

6.9.2 PROTECTION FROM AN ENDLESS LOOP (SET INTERVAL)

When control is passed from the user interface to the simu-
lator, a counter is reset to zero and is incremented each
time an elementary timing signal is processed. If more than
one component has the same time, then each component will be
counted as one of the time increments in the counter. When
the value of a preset interval is reached, control is re-
turned to the user, i.e. the simulation system "breaks".
Without this protection, the wuser would not be able to
regain control of the system except by control C, which
would place the program back in the TOPS environment of the
DEC-20. The default value for the interval is 250, but may
be reset by the user to any value from 1 through 999, as

shown below:

100 SHOW n, m, ..+ <CR>
500 SHOW 5, 10, 11 <CR>

SIM> SET INTERVAL
SIM> SET INTERVAL

Usually the value of the interval is set below 250 as a
safety measure to return control to the user if the intended
break points are missed. When the automatic break occurs,
all menus referenced by the numbers following the reserved
word "SHOW" will be displayed. The menu and break are dis-
cussed in the sections which follow.

6.9.3 DEFINING THE MENU, DISPLAY AND BREAK TABLES

The system provides storage capability for three lists with
twenty items in each list. These lists are entered by the
user in an interactive mode. The lists are (1) groups of
identifiers which will be displayed at the terminal at one
time (called menus), (2) times and/or active component where
the execution (simulation) is to "break" and (3) items
and/or times where values are to be displayed. The follow-
ing command shows the syntactical form to start the collec-
tion of data in any one of the three tables.

SIM> DEFINE <TYPE> n <CR> where TYPE may be MENU,
DISPLAY, or BREAK and n is 1 through 20.

SIM> DEFINE MENU 12 <CR> (one entry only)
SIM> DEFINE BREAK 4 <CR> (one entry only)
SIM> DEFINE DISPLAY <CR> (system uses next number and
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SIM> DEFINE MENU <CR> continues requesting entries)
SIM> DEFINE BREAK 6,7 <CR> (request two entries)

The value of "n" may be from 1 through 20 to designate the
number the item will use as an identifier. 1If the type is
MENU, the collection mode will accept up to five identifiers
per entry one at a time. The identifiers may be any item
with a specific value such as pins, registers, memory
location or a connector. The DISPLAY and BREAK modes are
entered in the same way, but a single component, specific
time or both specifies the component/time which is to cause
either a display or break. Up to five menu numbers may be
associated with the break or display items. These
definitions are lost when the user leaves Simcal.

6.9.4 LISTING MENUS, BREAKS, AND DISPLAYS

The user will need to know what has been placed in the three
tables so that corrections can be made and proper use of the
tables can be realized. The following commands show how all

or part of the tables may be displayed.

LIST <TYPE> m <CR> where m may be a number, a range
such as n - n, or "ALL".

LIST BREAK 1 - 10 <CR>
LIST DISPLAY 12 <CR>
LIST MENUS ALL <CR>

6.9.5 DELETING(UNDELETING) ITEMS IN THE TABLES
The user may clear the items in the tables, making the table

more legible, and also making the storage available for
entry of other items by use of the DELETE command. The form

is that of the previous command.

DELETE <TYPE> m <CR>(The values are the same as above).
The DELETE command does not actually destroy the memory
image but sets a key allowing the item to be written over.

During the same session, the user can reverse the process by
entering "UNDELETE" followed by the type and number.

6.9.6 ACTIVATE/DEACTIVATE THE BREAK AND DISPLAY ITEMS.
The break and display items may need to remain active or be
set to a dormant state until needed, depending on the actual
work in progress. This is accomplished as shown below.
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ACTIVATE <TYPE> m, (m =number or range, TYPE is BREAK
(or DISPLAY.)
DEACTIVATE (TYPE) m - n (DEACTIVATE m through n)

6.9.7 SETTING THE FORMAT FOR INPUT and OUTPUT.

The data transfers during simulation have been set when the
description of the hardware was written and those will be
followed when the simulator is in control. The user should
keep in mind that printing and acceptance of data under
program control, although at the same actual terminal being
used to control simulation, is controlled from the hardware

descriftion, whereas the simulation is under the immediate
control of the user. At every break, the Sim-driver is in

control and the user is free to set the format which is to
be used to receive and to submit data and change values in
storage. The format for this command is:

SET FORMAT TO BIN <CR> (HEX OCT DEC ASCII also avaialble)
6.9.8 DISPLAYING VALUES IN THE SIMULATOR. .

Any stored value in the machine can be displayed using any
format desired. The default is hexadecimal, but can be
changed by use of the SET command Jjust discussed.. The
command to display stored values in registers, pins, wires
or memory is shown in the following example:

SIM> SHOW mmm <CR> where mmmm may be any register.
SIM> SHOW mmm (nn) <CR> where nn is the number of a
dimensioned register or memory.
SIM> SHOW PINS (34-38) OF <identifier> <CR>
SIM> SHOW TIME (shows the next time increment which is
(to be simulated.)

6.9.9 SETTING VALUES IN THE SIMULATOR.

The values in.the registers, on the pins, and on wires may
be set using the command as shown in the following examples.

SIM> SET <identifier> = value <CR>
SIM> SET <identifier> (nnn) <CR>
* SIM> SET TIME = n:n (n:n represents a time increment)
SIM> SET <identifier> (nnn) <CR>
SIM> SET PINS (26-32) OF <identifier> <CR>
SIM> SET WIRES (29 - 64) OF <identifier> <CR>
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The "wvalue", shown above is a numeric value in binay, octal,
decimal, or hexadecimal. The hexadecimal value must start
with a numeral. The base is indicated by a suffix of "B",
"o" (or "Q"), "D" (or suffix omitted), or "H". The value is
checked to assure there is room in the component. If the
numeric value is smaller than the target components, the
simulator will assume the higher numeric value in a group of
pins or wires is the low order. e.g., If "SET PINS (30-37)
= 3", then pins 30-15 will be set on one and pins 32 - 37
will each be set to zero. All values in the machine (except
memories) may be set to either 1 or O by entering:

SIM> SET ALL = O <CR>
SIM> SET ALL =

Memory may be set to 1 or 0 by:

SIM> SET MAIN = 1 <CR>
SIM> SET MICRO = 0 <CR>
SIM> SET AUXn = 1 <CR> (here n is 1, 2, or 3.)

All of the values of a dimensioned component may be set by
omitting the value in parenthesis which follows the name.

6.9.10 EXECUTION COMMANDS

Execution of the simulator may be started by one of four (4)
commands, "START", "RUN", "STEP", or "NEXT".

START

The start command places the values on the components which
were entered in the description, sets the clock to the wval-
ue specified, and starts execution. This is done each time
the user requests the action without regard to whether sim-
ulation has been occurring previously. This will not ordi-
narily be used until the design has been at least partly
verified. The user is cautioned that different results may
be obtained from different start ups, since the values not
set on start will likely not be the same each time.

RUN
The RUN command is executed by entry of "RUN". The BREAKS
and DISPLAYS having already been set, the simulator will

then run until a break position is executed or until
reaching the interval limit which has been set.
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STEP

The STEP command is also available to allow the user to step
through a program. Unlike the RUN command which wuses the
tables to preset the display and break positions, the step
command requires that the menus which are to be displayed be
entered with the command. After the step is started, the
requested display will be made at each time increment ( if
concurrent items, then after both items) and break from the
operation will be after each time interval (after each
component when concurrent operations using a single time
event is executing). Only a <CR> is needed to go to the
next step. The user can turn off the step mode by entry of
"NOSTEP" or by entry of any legitimate simulation command.
Examples of the three execute commands so far discussed

5

follow.
START <CR>
RUN <CR>

STEP show mmm, mmm, mmm <CR> (mmm are menu numbers)

NEXT

The NEXT command will execute the number of steps indicated
by the value following the word "NEXT" and will display as
required by the display actions included in the command.
This is of particular use during the early stages of test

and checkout. An example follows.

NEXT 55, SHOW 19 AT TIME=8:1:0, SHOW 12 AT TIME=0 <CR>

6.9.11 USING THE TRACE COMMAND

The TRACE command is available to determine the path a
machine is following. As an execution of a specific item is
started, a message is displayed which shows the item and the
time. Data may also be displayed in conjunction with a
trace by activating a display from a referenced menu. Once
execution passes an item which has turned the trace off, it
will no longer be active until the execution again passes a

trace on command.

SIM> TRACE ON AT <component> <CR>
SIM> TRACE ON AT <component> <CR>
SIM> TRACE ON AT (time> <CR>
SIM> TRACE ON <CR>
SIM> TRACE OFF AT <component> <CR>
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SIM> TRACE OFF ALL <CR>
SIM> TRACE OFF <component> <CR>

This feature allows the user to repeat certain areas of
execution while omitting other areas. By setting the limits
over which the TRACE will range, the user can control the

output.
6.9.12 TIMING AND LOOP CONTROL

The timer uses up to eight levels, each value may have a
value from O through 9. Thus the minimum is 0:0:0:0:0:0:0:0
and the maximum value is 9:9:9:9:9:9:9:9. The use of SET
to set the current time was explained in section 6.9.8.

During compilation a table is constructed of times used (a1l
do not have to be used). A component is associated with
each time increment used, but a component may use several
time increments or share these times with another component.
When simulation begins, execution will start at the item
activated by the timer setting and then move to the next
item. If the time is not set by the user, the value will be
0:0:0:0:0:0:0:0. The user may also set a sequence of events
with a range of times. 1In the example below, if the first
value is less than the second the time will proceed from the
first to the second and repeat else an error will be

displayed.

SET LOOP FROM n:n:n TO n:n:n;
SET LOOP FROM 0:1:4 TO 0:2:3;
SET LOOP FROM 2:4:5:1 TO 2:4:5:9;

6.9.13 HISTORY

By entering “HISTORY", the user can set a flag which causes
an internal record of the execution path to be saved. Up to
100 component/times are placed in a table which may then be
displayed to the user in reverse order. These can be dis-
played a few at a time by following the history display com-
mand with a number. An example of the commands follow.

HISTORY (sets flag)

NO HISTORY (resets flag)

SHO HIST (lists 100 items starting with most recent)

SHO HIST nnn (lists nnn at a time most recent first)
(A CR will restart execution.)

SHO HIST FORWARD (lists items in forward order)
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SHO HIST FORWARD FROM mmmm (lists history from time)
6.9.14 TIEING A PORT TO AN EXTERNAL FILE

Three data files are available to the user to either store
data for input during execution or to collect data from the
object machine during 2xecution. These may be connected to
one or more ports at the user's discretion. Input data may
be reused by use of the reset command. Examples of the  com-

mands follow.
TIE n TO identifier IN (reads n as execution requires.)
TIE n TO identifier of identifier OUT (qualifies the
identifier and ties to receive data)

RESET FILE n (sets pointer for n back to zero for read-
ing RE-WRITING from the first.)
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APPENDIX AND EXAMPLES TO THE

CALSIM/SIMCAL USERS' MANUAL
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APPENDIX 1

CALSIM RESERVED SYMBOLS AND WORDS

SYMBOLS AND LETTERS

End of statement marker.

< Less than.

{ or [ Opening bracket in wiring statement.

} or ] Closing bracket in wiring statement.

( Parenthesis.

+ Arithmetic plus operator

& Logical AND operator.

! Logical OR operator.

* Arithmetic multiply operator.

) Closing parenthesis.

: Separator symbol between clauses.

- Arithmetic minus operator, also range separator and
connector in identifiers.

/ Arithmetic divide operator.

, Used as separators in several lists

> Greater than.

: Required punctuation in several locations.

= Replacement symbol.

B Used at end of 0/1 string to indicate a binary number.

D At end of number string to indicates a decimal number.

H At the end of string starting with a number, indicates A
hexadeciaml number.

O At end of number string to indicate an octal number.

Q At end of number string to indicate an octal number.

WORDS

AND Used in connector statement.

ARE Used as part of several statements.

AS Used as part of store statement.

ASCII Indicates that format of storage is ASCII.

AUXMEMORY Auxiliary memory description follows.

BACKPLANE Indicates a conductor description follows.

BCD Designates type of I-O expected at terminal.

BINARY Describes format to and from I-O device.

BUS The beginning of a connector statement.

CASCADE Cascades registers into a single register.
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CHIP

CMP

CONNECT
CONTAINS
COMPONENT
COoPY

CORD
DESCRIPTIONS
DISPLAY

EA

EACH

EBCDIC

ELSE

END

EQ

FLPOINT
FORMAT

GREY

HEX

I-0

IF

IN

INPUT

INTO -
IS

LEVEL

LIMIT
MEMORY
MICROMEMORY
NAME
NAMED
NAND
NEG,
NOR
NOT
NUMBERED
Octal

OF

ON

OR
OUTPUT
PCKD-DEC
PIN
PINS
PORT
PRINTER

NEGATE
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Start of component statement.

Monadic operator meaning complement.

Key word starting the wiring statement.

Used in hierarchy statement.

Key word in component statement.

Start of the copy statement.

Key start word in the connector statement.
Used in last statement in input stream.

Used during I O to give a message to the
person simulating the system.

Alternate spelling for each.

Specifies several LSI's is in description.
One of the formats used in the format clause.
Start of alternate in conditional statement.
Indicates the end of a series of statements.
The conditional equal.

One of the formats for I-O.

Key word in format clause.

Used to designate GREY code.

Used for Hex code designation.

Key word in I-O description.

Beginning of conditional expression.
Equivalent to "OF" in start statement.

Part of I-O statement.

Part of Cascade clause.

Used in several statements, same as
Key word in Hierarchy statement.
Used in time limit statement.

Key word to start memory statement.
Key word to start micromemory statement.
Used in system identifier statement.
Used in connector statement.

Boolean operator.

Monadic operator.

Boolean operator.

Boolean operator.

Used in connector statement.

Sets data type.
Part of syntax of several statements.

Part of "ON PULSE" clause.

Boolean operator.

Used in the I-O statement.

Format in I-O statement.

Key word in pin clause.

Same as PIN.

Peripheral keyword euqivalent to I-O.
Equivalent to I-O.

"ARE".
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PULSE
REGISTER
REGISTERS
RENAME
REPLACING
RESET

RL

RR

SET
SGND-BIN
SIZE

SL

SR

START
STORE

SUBREGISTERS

SUFFIX
SYSTEM
TERMINAL
THEN

TIME, TIMES

TO
WIRES
XOR

lel

Part of ON PULSE clause.

Part of register description clause.
Same as register.

Used to rename a copied item description.
Used in Copy statement.

Used to reset time.

Rotate left.

Rotate right.

Used to set time in timing clause.
Signed binary in format clause.

Shows size in memory descriptions.
Shift left.

Shift right.

Key word in start statement.

Key word in store statement.

Key word in subregister clause.
Specifies suffix in copy statement.
Appears in the system name description.
Equivalent to I-O.

Used in the IF statement.

Used in time statement and time clauses.
Used in several statements and clauses.
Used with connector description.

Booclean operator.
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APPENDIX 2

SIMULATOR INTERFACE RESERVED WORDS

SYMBOLS: ; ( ) = : =

RESERVED WORDS:

ACTIVATE, ACT Used to activate BREAKs.

ALL Used in several commands.

ASC (ASCII) Designates data type.

AT Connector in step command.

AUX Used to designate an auxiliary file.

BIN Designates data type.

BREAK Key word to start BREAK collection.

CRNT Used with TIME for current.

DEACTIVATE, DEACT Used to deactivate BREAKs, DISPLAYs.

DEC Data type.

DEFINE, DEF Key word to start list collection.

DELETE, DEL Used to delete items from the lists.

FILE Names a file to connect/disconnect.

FORMAT Sets the user format in simulation.

FORWARD, FORW Reverses order of history display.

- FROM A connector in the history display.

HEX Designates data type.

HISTORY, HIST Used in SHOW HISTORY command.

INPUT, IN Used in TIE command.

INTERVAL, INT Used to set maximum interval.

LIST, L Displays the items in the LISTs.

LOOP Key word in the LOOP command.

MAIN Refers to main memory.

MENU, MEN Key word to collect menus.

MICRO Reference to micro file.

NEXT, N Key word in NEXT command.

NO Used to turn off HISTORY collection.

OCT Designates OCTAL.

OF, IN Connector to qualify identifier.

OFF, ON Used in TRACE command.

OUTPUT, OUT Used in the TIE command.

PINS PIN, P Used in several commands.

RESET Used to set a file pointer to start.

RUN Starts operation.

SET Used to set various values.

SHOW, SHO, S Used to display identifier values.
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START Starts the simulation process.

STEP Key word to start the STEP process.

TIE Ties system to a specified file.

TIME Used to reference the clock.

TO Connector in SET and TIE commands.

TRACE, TR Starts or stops TRACE action.

WIRES, W Designates WIRE in several commands.
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APPENDIX 3

EXAMPLES IN THE CALSIM/SIMCAL SYSTEM

This series of examples begin at the lowest level
(the flip-flop) and increase  in complexity through the
bit-sliced microprogrammable components. Each example allows
the reader to build on that already learned and to further
extend his use of the language. Each example includes:

A. A description of the device.
B. The Calsim program listing of the device.
C. A block diagram of the device.

The examples include:

Appendix 3.1 FLIP FIOPS . « « + & o o« o s o o+ o« « » 50
Appendix 3.2 REGISTERS AND SHIFT REGISTERS. . . . . 52
Appendix 3.3 COUNTERS, ENCODERS, DECODERS . . . . . 54
Appendix 3.4 HALF ADDERS, FULL ADDERS . . . . « . & 57
Appendix 3.5 THE ARITHMETIC LOGIC UNIT (ALU). . . . 60
Appendix 3.6 CONTROLLING PROGRAM SEQUENCE . . . . . 64
Appendix 3.7 THE MIC COMPUTER . . « + « « « « « » o 68
Appendix 3.8 THE AMD LEARNING KIT . . « « ¢ ¢« ¢ o & 76
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APPENDIX 3.1 FLIP-FLOPS

A simple circuit is used +o introduce the Calsim
language and support system. Only the most basic language
gtructures are used in this example; other structures will
be introduced in subsequent examples. The flip-£flop is the
basic bi-gtable device used in computer circuits to capture
and store the binary value. The description in Calsim
includes the NOR gate as a one bit register as shown in
figure 1. The clock circuits, usually shown are omitted
since our A Computer Hardware Description Language will
provide the timing without the need to "wire" the component
with 2 timing circuit. :

] .
R P ._@c.ioo

1 . )QER 4

Q
oo ]

FIGURE 1 AN R-S FLIP-FLOP.
CALSIM LISTING:
SYSTEM NAME IS R-S-FLIP-FLOP.
LEVEL l: R-S-FLIP-FLOP CONTAINS R-S-FF.
COMPONENT: R-S-FF
PINS ARE NUMBERED (1-4) NAMED R, S, Q, QB:
REGISTERS ARE QR(1), QBR(1):
SET TIME = 1:0: :
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/* THE PIN ON THE LEFT - # 1 - IS CONSIDERED THE LOW
ORDER PIN. THAT IS IF THE VALUE IS 01 THEN PIN 1 IS
1 AND PIN 2 HAS A VALUE OF 0. */

.IF PINS (1-2) EQ Ol THEN PIN OB = 0, PIN Q =1 D,
OR(1) = 1, OBR(1l) = OA H;
IF PINS (1-2) EQ 10B THEN QB=1, Q = 0, QR = 0, QBR = 1;
IF PINS [R S] EQ 3D THEN OB = X, Q = X, QR = X, OBR = X.
/* NOTE: IF PINS(1-2) = 00 THEN NO CHANGE OCCURS */
END OF R-S-FLIP-FLOP.

END OF DESCRIPTIONS.

page 51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com



167

APPENDIX 3.2 REGISTERS AND SHIFT REGISTERS

FIGURE 2 shows a 4-bit parallel to serial shift
register. The shift register includes a "clear" capability
which will place all zeros on the output lines. Note that
four time periods are needed to get all four bits into the
shift register and that the bit first received ripples
through each position. The terminal included in the
description is a software version of the test instruments
used with hardware when checking hardware operation.

Two new Calsim statements are introduced in the
descriptions in this example. The first of these 1is the
START statement in which PIN, REGISTER, MEMORY, and TIME
values can be established. The second is "COPY". Note that
copying is anticipated in the LEVEL statement which preceeds
the actual copying. The user should also note that the
description is stored under one name (up to thirty

naracters) but the name which actually appears in .the
gescription is the name embedded in the description.

CALSIM LISTING:
SYSTEM NAME FOUR-BIT-SHIFT..

/* WE WILL STORE THE CHIP AND THEN COPY IT FROM THE
LIBRARY. */ ‘

STORE AS D-FLIP-FLOP.
CHIP: DFF PINS ARE NUMBERED (1-3) AND NAMED SGIN, OUT, CLR;

REGISTER IS RDFF(1l);
SET TIME = *:0; /* DIGIT 1 TO BE SUPPLIED AT COPY TIME.*/

/* THE CHIP IS FIRST ZEROED IF THE CLR LINE IS HIGH. */
IF CLR EQ 1 THEN RDFF = 0, OUT = 0;

SET TIME = *:1;
IF SGIN EQ 1 THEN RDFF =1, OUT =1

ELSE RDFF = 0 OUT = O.
END OF D-FLIP-FLOP.

LEVEL 1l: FOUR-BIT-SHIFT CONTAINS 4 EACH DFF,
USER-TERMINAL, SHIFT-BUS.

/* IN THE FOLLOWING TIME STATEMENT THE VALUES 1 THROUGH 4
ARE PLACED IN THE FIRST POSITION OF THE CLOCK. */

COPY 4 EACH D-FLIP-FLOP TIME = l:%*,4:%,1:%,
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/* NOTE THAT HIGH ORDER (DFF01l) IS SHIFTED FIRST SO THAT
THE INCOMING BIT WILL RIPPLE TO THE HIGH END OF THE
SERIES OF FLIP-FLOPS. */

CORD: SHIFT-CORD NAMED INPT, CLR, Ql, Q2,
Q3, Q4.

TERMINAL: USER-TERMINAL PINS ARE NUMBERED (1-6) AND NAMED
ouT, CLR, Q1, 02, Q3, Q4:
FORMAT IS HEX:
SET TIME = 0:1;
ON PULSE DISPLAY "ENTER VALUE FOR PINS 1-2",
PIN (1-2) = INPUT;

SET TIME = 5:0;
ON PULSE DISPLAY "PINS-3-6-ARE "

OUTPUT = PINS (3-6).

CONNECT SHIFT-BUS TO USER-TERMINAL [(1-6)] [(1-6)];
TO DFFO1 _ (5 6 21 [(1-3)];
TO DFFO02 (4 5 2] [1 2 33;
TO DFFO03 (3 4 2] 1 2 3];:
TO DFFO04 (1 3 23 £(1-3)].

START: SET TIME = 0:0; WIRE (2) OF SHIFT-BUS = 1B.

END OF FOUR-BIT-SHIFT. END OF DESCRIPTIONS.

[.. |
= CLR CLR L CLR L- CLR
DFFg4 DFFZ3 DFFg2 DFF41
r—IN ouT IN OUT IN OUT IN OUT
3 4 5 6
Q1 Q2 Q3 { Q4
> ouT '
CLR USER-TERM

FIGURE 2 A SHIFT REGISTER WITH A "USERS' TERMINAL".

-
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APPENDIX 3.3 COUNTERS, ENCODERS, AND DECODERS

A counter, terminal and counter is presented in this
example and the wuse of multiple I-O devices is introduced
with the 20 light emitting diodes (LED) for output. The
output of each of these will be printed (if "ON") on the
user terminal along with the device number.

CALSIM DESCRIPTION:

SYSTEM NAME IS COUNTER-DECODER.

STORE AS LIGHT-EMITTING-DIODE.

PORT: LED PIN IS NUMBERED 1; FORMAT IS BINARY;
SET TIME = *;
IF PIN 1 > O AND PIN 1 < 2 THEN OUTPUT = 1.

/* NOTE THAT THERE IS OUTPUT ONLY IF THE LIGHT IS ON. */

END OF LIGHT-EMITTING-DIODE.

LEVEL 1: COUNTER-DECODER CONTAINS COUNTER, DECODER, 20 EACH
LED, INPUT-TERMINAL, Q-BUS.

COPY 4 EACH LIGHT-EMITTING-DIODE TIME = 2:0.
COPY 16 EACH LIGHT-EMITTING-DIODE TIME = 4:0,5:5.

/* THE FIRST 4 WILL HAVE THE SAME TIMES, THE LAST 16 WILL
HAVE TIMES SEPARATED BY 0:1 UNITS. */

COMPONENT: COUNTER WIRES ARE NUMBERED (1-6) AND NAMED CLR
CNT Ql, Q2, Q3; /* HERE THE LAST NAME IS OMITTED
TO SHOW CALSIM RESPONSE. */

REGISTER IS BIN-CNT (4);
SET TIME= 1l:1:
IF CLR EQ 1 THEN BIN-CNT=0 Q0=0 Ql1=0, Q2=0, Q3=0;
IF CNT EQ 1 THEN BIN-CNT = (BIN-CNT + 1):
ON Q0 = BIN-CNT (1), Q1 BIN=CNT (2),

Q3 BIN-CNT (3), Q4 BIN-CNT (4).

/* NOTE THAT QO AND BIT 1 IN BIN-CNT ARE LOW ORDER */

CHIP: DECODER PINS ARE NUMBERED (1-20) AND NAMED IN1l, IN2,
IN3, IN4, ZERO, ONE, TWO, THRE, FOUR,FIVE, SIX, SEV,
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EIGH, NINE, TEN, ELEV, TWEL, THIR, FRTN, FIFT:;
SET TIME = 3:0; ON PULSE PINS(5-20) = O;/*RESET PINS*/

SET TIME = 3:1;

IF PINS (1-4) EQ O THEN PIN 5 = 1;
IF PINS (1 - 4) EQ 1Q THEN PIN 6 =
IF PINS (1 - 4) EQ THEN PIN 7 =
IF PINS (1 - 4) EQ THEN PIN 8 =
IF PINS (1 - 4) EQ THEN PIN 9 =

IF PINS (1 - 4) EQ THEN PIN 11
IF PINS (1 - 4) EQ 70 THEN PIN 12
IF PINS (1 - 4) EQ THEN PIN 13
IF PINS (1 - 4) EQ 9 THEN PIN 14
IF PINS (1 - 4) EQ 10 THEN PIN 15
IF PINS (1 - 4) EQ 11 THEN PIN 16
IF PINS (1 - 4) EQ 12 THEN PIN 17
IF PINS (1 - 4) EQ 13 THEN PIN 18
IF PINS (1 - 4) EQ 14 THEN PIN 19
IF PINS (1 - 4) EQ 15 THEN PIN 20

2
3
4

IF PINS (1 - 4) EQ 5 THEN PIN 10
6
7
8

Ll el el el el ol o) S STl SR S Sy
@ Ve NE NI N N NP Mg e N Ng Ng Np N “

BUS: Q-BUS IS NUMBERED (1-22) AND NAMED CLk SETT QO
Ql, Q2, 03, ZERO, ONE,TWO THRE FOUR FIVE SIX SEVE EIGH,
NINE, TEN, ELE, TWEL, THIR, FRTN, FFTN.

CONNECT Q-~BUS TO TERM ((1-2)] [(1-2)]
TO BINCNT [(1-6)] [(1-6)§

TO DECODER [(3-20)] [(1-20 ﬁ;

TO LEDOI [71] [(11;
TO LEDO2 [81] [1]:;
TO LEDO3 [o] [1];
TO LEDO4 [10] (17
TO LEDOS5 (1137 [1]:
TO LEDO6 fi2] o [1];
TO LEDO7 [13] (11;
TO LEDOS8 141 [1];
TO LEDO9 (151 [13;
TO LED10 f16] [13;
TO LED11 (171 [1]3;
TO LED12 [18] [1];
TO LED13 f19] [1l:
TO LED14 [20] [13;
mO' LED15 [21] [1];
TO LED16 [22] [13;
TO LED17 [23] [1];
TO LED18 [24] 1]
TO LED19 [25] [1]:
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TO LED20 [26] [1].

I-0: INPUT-TERMINAL PINS ARE NUMBERED (1-2) AND NAMED CLR
CNT; /* NOTE THAT ONLY Ol & 10 ARE LEGAL ENTRIES. */

FORMAT IS BINARY; SET TIME = 0:5;
ON PULSE DISPLAY "ENTER 10 TO CLEAR, 0l TO COUNT";

ON PULSE PIN (1-2) = INPUT:
SET TIME =9:0; ON DISPLAY " LIGHTS ARE ON.".

END OF COUNTER-DECODER.
END OF DESCRIPTIONS. -

CLR

A
BINARY-COUNTER
CNT p——————tm

2

3 4 . 5 6
e
DECODER

STTTT TSI LTI LI oE

COUNTER-DECODER

INPUT-TERMINAL

FIGURE 3 COUNTERS, ENCODERS, DECODERS
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APPENDIX 3.4 HALF ADDERS, FULL ADDERS

The full adder shown in figure 4 uses the truth table
shown in table 4. Note that the description uses the full
adder as the elementary component. The internal wiring
shown in the figure is for user information only. Calsim
need not make these connections.

An additional Calsim construction is introduced here
-- the use of the qualifier to show which identifier is
being referenced. In this case the callout is not needed
since there iz only one set of pins. The EACH expression is
also used here in a more complex structure than when used
with the LEDs.

TABLE 4 TRUTH TABLE FOR THE SUM OF A, B, CRY

SUM CRY OUT

3
<

HiRHMEHOOOO M
HMROQOOHMHOOW
HOMHOFROFD
_OoOOM,ROHRKHOCO
HHRMHOEFOO

CALSIM DESCRIPTION:

/* A FOUR BIT FULL ADDER */
SYSTEM NAME IS FOUR-PLACE-FULL~ADDER-CHIP.
LEVEL 1: FOUR-PLACE-FULL~-ADDER-CHIP CONTAINS FOUR-PL-ADDER.
LEVEL 2: FOUR-PL-ADDER CONTAINS 4 EA FULL-ADDER ADDER-BUS.
CHIP: FULL-ADDERO1l, PINS ARE NUMBERED (1-5) AND NAMED

CI, A, B, CRY, SUM; /* LOW ORDER */
SET TIME = 0:5; .

IF PINS (1-3) EQ O0OOB THEN SUM = 0, CRY = O;
IF PINS (1-3) EQ OO1B THEN SUM = 1, CRY = 0;
IF PINS (1-3) EQ 0O10B THEN SUM = 1, CRY = O;
IF PINS (1-3) EQ 0Ol11B THEN SUM = O, CRY = 1;
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IF PINS (1-3) EQ 100B THEN SUM = 1, CRY = O;
IF PINS (1-3) EQ 101B THEN SUM = 0, CRY = 1;
IF PINS (1-3) EQ 110B THEN SUM = 0, CRY = 1;
IF PINS (1-3) EQ 111B THEN SUM = 1, CRY = 1.

CHIP: FULL-ADDERO2 PINS ARE NUMBERED (1-5) AND NAMED
CI, A, B, CRY, SUM;
SET TIME = 0:6;

IF PINS (1-3) EQ O THEN SUM = 0, CRY = O;
IF PINS (1-3) EQ 1 THEN SUM = 1, CRY = 0O;
IF PINS (1-3) EQ 2 THEN SUM = 1, CRY = O;
IF PINS (1-3) EQ 3 THEN SUM = 0, CRY = 1;
IF PINS (1-3) EQ 4 THEN SUM = 1, CRY = O;
IF PINS (1-3) EQ 5 THEN SUM = 0, CRY = 1;
IF PINS (1-3) EQ 6 THEN SUM = 0, CRY = 1;
IF PINS (1-3) EQ 7 THEN SUM =1, CRY = 1.

CHIP: FULL-ADDERO3 PINS ARE NUMBERED (1-5) AND NAMED
ci, A, B, CRY, SUM;
SET TIME = 0:7;

IF PINS (1-3) EQ O THEN SUM = 0, CRY = O;
IF PINS (1-3) EQ 1 THEN SUM =1, CRY = O;
IF PINS (1-3) EQ 2 THEN SUM = 1, CRY = O;
IF¥ PINS (1-3) EQ 3 THEN SUM = 0, CRY = 1;
IF PINS (1-3) EQ 4 THEN SUM = 1, CRY = O;
IF PINS (1-3) EQ 5 THEN SUM = 0, CRY = 1;
IF PINS (1-3) EQ 6 THEN SUM = 0, CRY = 1;
IF PINS (1-3) EQ 7 THEN SUM = 1, CRY = 1.
CHIP: FULL-ADDERO4 PINS ARE NUMBERED (1-5) AND NAMED

CI, A, B, CRY, SUM;
SET TIME = 0:8;

IF PINS (1-3) EQ O THEN SUM = 0, CRY = O;
IF PINS (1-3) EQ 1 THEN SUM = 1, CRY = O;
IF PINS (1-3) EQ 2 THEN SUM = 1, CRY = O;
IF PINS (1-3) EQ 3 THEN SUM = 0, CRY = 1;
IF PINS (1-3) EQ 4 THEN SUM = 1, CRY = O;
IF PINS (1-3) EQ 5 THEN SUM = 0, CRY = 1;
IF PINS (1-3) EQ 6 THEN SUM = 0, CRY = 1;
IF PINS (1-3) EQ 7 THEN SUM = 1, CRY = 1.

START: SET TIME = 0:5; PINS (1-5) IN FULL-ADDEROl = O;

PINS (1-5) OF FULL-ADDERO2 = 0;

PINS (1-5) OF FULL-ADDERO3 = 0;

PINS (1-5) OF FULL-ADDERO4 = O.

BUS: ADDER-BUS IS NUMBERED (1-17) AND NAMED CI,Al,Bl,X12,S1,
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A2,B2,X23,82,A3,B3,X34,53,A4,B4,C0,54.

CONNECT ADDER-BUS TO FULL-ADDEROl [(1-5)][(1-5)]:
TO FULL-ADDERO2 [4,(6-9)]1[(1-5)1;

TO FULL-ADDERO3 [8, (10-13)1((1-5)]:
TO FULL-ADDERO4 [12, (14-17)][(1-5)].
END OF FULL~ADDER-CHIP. ‘
END OF DESCRIPTIONS.
CI'Y 1 4—. RS SEmm oy -—.CW
In T |Full . Out
2
i Adder}.. oy -
| f f f— 1
AB AB AB AB L
‘ . un
o (~ Sum
L

FIGURE 4 A FULL ADDER
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APPENDIX 3.5 THE ARITHMETIC LOGIC UNIT (ALU)

The arithmetic 1logic unit performs operations on
either one or two operands usually selected £from those
available in the immediate registers or held in a latch. 1In
some systems, the operand may be fetched from main memory.
The resulting value is then stored or made available for
other action by placing the value on the data bus. The AMD-
2901 four bit-slice central processing element (CPE) shown
in figure 5.A is chosen for this example as it demonstrates
several of the functions found in the ALU. The logic of the
system is shown in Tables 5.1, 5.2, and 5.3.

The AMD-2901 is a four (4) bit slice which may be cas-
caded into a width any multiple of four. The item contains
16 general registers, and a special register (Q). These may
be loaded with data which has been rotated left or right or
unrotated. The ALU instruction itself is divided into three
parts of three bits each as shown in tables 5.1, 5.2 and
5.3. These are used for the source of data, operations on
data, and disposition of data.

When the chips are cascaded, the carry in is connected
to the adjoining carry out so that the whole series has a
single carry-in and a single carry-out. The same is true of
the RAMO, RAM3, Q0 and Q3. The reader is referred to the
AMD-2901 data sheet for a further explanation of the chip.
The designations here follow that of Advanced Micro Devices
designation for the 40 pin DIP (Dual Inline Pins).

This example introduces the use of "working" registers
which are analgous to working registers .found in hardware.
Such registers are available to the hardware (in this case
SIMCAL), but not to the assembly programmer.

TABLE 5.1 ALU SOQURCE SELECTION OPERANDS

OCTAL VALUE ALU SOURCE
I2 11 10 OPERANDS

NounbwNEO
HHRHOOOO
HHEHQOKHMOO
HOHOMO MO
Juouooco»i
CorpYwoOoOwon
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TABLE 5.2 ALU FUNCTION CONTROL

OCTAL CODE MNEUMONIC FUNCTION
(16, 15, 14 CODE

0 ADD R + S

1 SUBTRACT S - R

2 SUBTRACT R - S

3 OR R OR S

4 AND R AND S

5 NOTRS NOT R AND S

6 EXOR EXCL R OR S

7 EXNOR NOT (R NOR S)

TABLE 5.3 DESTINATION CONTROL

OCTAL RAM FNCTION QREG FNCTN Y RAM Q-REG

18,7,6 SHIFT LOAD SHIFT LOAD OUT RMO RM3 QO Q3
0] X NONE NONE F->Q F X X X X
1 X NONE X NONE F X X X X
2 NONE F->RAM X NONE A X X X X
3 NONE F->RAM. . X NONE F X X X X
4 DOWN F/2->RAM DOWN Q/2->Q F FO .NZ QO NC
5 DOWN F/2->RAM X NONE F FO X 00 X
6 upP 2F->RAM UP 2Q->Q F NC F3 NCC Q3
7 up 2F->RAM X NONE F NC F3 X X

CALSIM DESCRIPTION:
SYSTEM NAME IS AM2901A-CPE.

LEVEL 1: AM2901A-CPE CONTAINS AM2901A.
COMPONENT: AM2901A PINS ARE NUMBERED (1-40) AND NAMED

/* THIS IS FOR DIP ONLY, FLAT HAS OTHER VALUES */
A3,A2,Al1,A0,16,18,17,RAM3,RAMO,VCC,FO0,I0,1I1,
12,CP,Q3,B0,B1,B2,B3,00,D3,D2,D1,D0,13,1I5,1I4,
CN,GND, F3,GBAR, CN4,OVR, PBAR, ¥0,Y1,Y2,Y3,0EBAR;

REGISTERS ARE Q-REG(4) RAM(4,16) RAM-SHIFT(4) Q-SHIFT(4);
/* WE WILL SET UP SOME WORKING REGISTERS FOR OUR USE TO
MAKE THE MANIPULATION A LITTLE EASIER TO HANDLE. */
REGISTERS ARE A(4), B(4), 0-LOOP(4), R(4), s(4), F(4);

/* WE WILL WORK THE FIRST THREE VALUES OF THE OP CODE. * /

page 61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com



177

SET TIME = 2:0;

ON PULSE Q-LOOP = Q-REG, A = RAM(, PINS[AO0 Al A2 A31]),
D = PINS[DO D1 D2 D3], B = RAM(, PINSIBO Bl B2 B3]);

IF PINS(1-3) EQ O THEN R = A, S = Q-LOOP;
IF PINS(1-3) EQ 1 THEN R = A, S = B;
IF PINS(1-3) EQ 2 THEN R = 0, S = Q-LOOP;
IF PINS(1-3) EQ 3 THEN R = 0, S = B;
IF PINS(1-3) EQ 4 THEN R = 0, S = A;
IF PINS(1-3) EQ 5 THEN R = D, S = A;
IF PINS(1-3) EQ 6 THEN R = D, S = Q-LOOP;
IF PINS(1-3) EQ 7 THEN R = D, S = 0;:

/* LETS RESET THE TIME AND WORK I5,I4,I3 */

SET TIME = 3:0;
IF PINS(4-6) EQ O THEN F = R + S;
IF PINS(4-6) EQ 1 THEN F = S - R;
IF PINS(4-6) EQ 2 THEN F = R - S;
IF PINS(4-6) EQ 3 THEN F = R ! S;:
IF PINS(4-6) EQ 4 THEN F = R & S;
IF PINS(4-6) EQ 5 THEN F = R & S;
IF PINS(4-6) EQ 6 THEN F = R XOR S;
IF PINS(4-6) EQ 7 THEN F = NOT (R XOR S):

/* LETS RESET TIME AND WORK I6, I7, I8 */
SET TIME = 4:0;

IF
IF
IF
IF
IF

IF
IF

IF

PINS
PINS
PINS
PINS
PINS

Q-LOOP

PINS

PINS

Q-REG = SL Q-REG,

(7-9) EQ O
(7-9) EQ 1
(7-9) EQ 2
(7-9) EQ 3
(7-9) EQ 4
Q-LOOP
(7-9) EQ 5

(7-9) EQ 6

THEN Y = F, Q-REG = F;
THEN Y = F;

THEN Y=A, RAM(, PINS (17-20)) = F:
THEN Y=F, RAM(,PINS (17-20))=F;
THEN Y=F RAM(,PINS (17-20))=F / 2,
/ 2, PIN RO=F(l), PIN QO0=Q-LOOP(1l):
THEN Y=F, RAM(,PINS (17-20))=F / 2,
PIN RO = F(1), PIN QO = Q-LOOP(1l):
THEN Y=F, RAM(, PINS(17-20)) = F*2,
PIN R3 F(4), PIN Q3=Q-LOOP(4):

PINS (7-9) EQ 7 THEN Y=F, RAM(,PINS (17-20)) = 2*F,

END OF AM2901A-CPE.

END OF DESCRIPTIONS.
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APPENDIX 3.7 THE MIC COMPUTER

The MIC (Microprogrammable Instructional Computer) is
presented in this example to acquaint the reader with some
of the aspects of microprogramming without introducing

unnecessary complexity.
The cycle of this machine always ends with

microinstruction number 2zero, which then requests the next
program instruction. The next program instruction is
provided by main memory and converted to a microinstruction
address by the ROM. To carry out the intended operation one
to ten microinstructions are processed with the last always
returning control +to the instruction at location zero. A

brief description of the process follows.

A. The microinstruction is taken from the micromemory
and placed in the pipeline register. 1In this example,
that instuction will be used as the next executed
instruction although in actual practice the previous

instruction_would be exécuting while the register 1is
being loaded with the next instruction.

B. It is necessary at this point to specify the
sequence in which the instructions will be executed.
Table 8.1 shows the correct order so we will start
with the action on pins 1-2 which selects the data to
be placed on the ADDR-BUS. A value of 0 will place
PGM-CNTL on the address bus and a value of 1 will place
the NXT-ADDR on the bus. If no value is needed then,
the value must be 1 since the use of the PGM-CNTL
causes it to increment.

C. Positions 3-4 specifies the I-O device as follows:
00 No device action
01 Terminal number 1.
10 Terminal number 2.
11 Main Memory.

D. The third field (bit 5) determines whether the I-O
is READ or WRITE. READ = 0. WRITE = 1. If the command
is READ then the action will take place prior to the
ALU action; 1If the command is WRITE, then the action
will take place later after the ALU has completed the
action. This is reflected in the timing in the de-

scription.

E. Bits 6-7 determine the action of the latch on the
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data appearing on the data bus.
00 No Action
01 Load into A.
10 Load into B.
11 Load zeroces into both A and B.

F. Bits 8-11 provide sixteen(16) ALU actions which are
possible using A and/or B with the result always placed
in the accumulator. These actions are:

DECIMAL VALUE ACTION
OF BITS 8-11
00 NO ACTION, NOP
0l ACC = A + B
02 ACC = A AND B
03 ACC = A OR B
04 ACC = A
05 ACC = A - B
06 ACC = A XOR B
07 ACC = B
08 NEGATE ACC
09 SHIFT LEFT ACC
10 SHIFT RIGHT ACC
11 SHIFT LEFT THRU LINK ACC
12 SHIFT RIGHT THRU LINK ACC
13 COMPLEMENT ACC
14 ROTATE LEFT THRU LINK -~
15 ROTATE RIGHT THRU LINK
G. Bits 12-13 determine the dispositisan of the accum-

ulated data as shown below.

00 No Action

01 To low value in NXT-ADDR
10 To high Value in NXT-ADDR
11 To data bus

H. 1If the data is to be deposited then the address has
already been deposited and the device chosen. This com-

pletes the ALU action.

I. Pins 14-15 allow the user to select which flag may
be used to control either the microprogram or the main
program sequence. The setting merely selects the bit
which is to be placed on the wire that can then be used
to decide on a jump around. The code follows.
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00 flag 2
01 flag C
10 flag Vv
11 flag S

J. The next instruction to be executed may come from
either the address given from the PROM, the address
shown in the MM-PC or the address shown in the JUMP

position. The latter may be conditional on the value
from the chosen flag.
00 Get address from the PROM
01 Get address from the MM-PC
10 Jump to address given in locations 18 -27.
11 If flag line high jump to address from

locations 18-27, else to MM-PC.
K. Bits 18-27 is the 10 digit next address.

L. Bit 28 is set on 1 to restart the master clock,
The master clock is reset to O on each fetch of a pro-
gram instruction.

SYSTEM NAME IS MICRO-PGMBL~INST-COMPUTER.

LEVEL 1:

MICR-PGMBL-INST-COMPUTER CONTAINS MAIN-MEMORY, TERM1,
TERM2, ADDR-SEL~-ROM, ADDR-SEL-MM, MMPC, MICRO-MEM,
PIPELINE, ALU, ADDR-BUS, DATA-BUS, CNTL-~BUS.

BUS: ADDR-BUS IS NUMBERED (1-16).
BUS: DATA-BUS IS NUMBERED (1-8).
BACKPLANE: CNTL-BACKPLANE IS NUMBERED (1-95).

I-O: TERM1 PINS ARE NUMBERED (1-11);
/* PINS 9,10,11 FROM BUS(93, 94, 95) PIPELINE (30-32) ARE
USED AS FOLLOWS:

9 & 10 ACTION
00 NO READ OR WRITE N
01 TERMINAL 1
10 TERMINAL 2
11 MAIN MEMORY
PIN 11 O = READ; 1 = WRITE. */

FORMAT IS GREY:;
SET TIME = 0:5;
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IF PINS(9-10) EQ Ol AND PIN 11 EQ O THEN OUTPUT=PINS (1-8);
IF PINS(9-10) EQ Ol AND PIN 11 EQ 1 THEN PINS (1-8) = INPUT.

I-0: TERM2 PINS ARE NUMBERED (1-11);
FORMAT IS ASCII;

SET TIME = 9:0;
IF PINS(9-10) EQ Ol AND PIN 11 EQ O THEN OUTPUT=PINS (1-8);

IF PINS(9-10) EQ Ol AND PIN 11 EQ 1 THEN PINS (1-8) = INPUT.

CHIP: ADDR-SEL-ROM PINS ARE NUMBERED (1-18):
REGISTER IS ROM-REG (10,256):

SET TIME = 1:0;
ON PULSE PINS (9-18) = ROM-REG(,PINS(1-8)).

CHIP: ADDR-SEL-MM PINS ARE NUMBERED (1-43) AND NAMED
pPCl, PC2, PC3, PC4, PC5, PC6, PC7, PC8, PC9, PClO,
ROl, RO2, RO3, RO4, RO5, RO6, RO7, RO8, RO9, ROI1O,
JM1, JM2, JM3, JM4, JM5, Jme, JMmM7, JM8, JM9, JMI1O,
oTl, oT2, OY3, oT4, OT5, OoT6, OT7, OT8, OT9, OT1O,
FLG, CNT1l, CNT2:

SET TIME = 2:0; )
/* PIN 41 CARRIES 1 (FLAG SET) OR 1(FLAG NOT SET) FROM THE

ALU FLAGS. PINS [41, 42] ARE USED AS FOLLOWS:

SETTING ACTION
00 USE THE PC ADDRESS
or UNCONDITIONAL JUMP
10 USE VALUE FROM ROM
11 JUMP IF FLAG SET */

IF PINS [CNT1 CNT2] EQ OOB THEN PINS (11-20) PINS (01-10);
IF PINS [CNT1 CNT2] EQ OlB THEN PINS (11-20) PINS (31-40);
IF PINS [CNT1 CNT2] EQ 10B THEN PINS (11-20) PINS (21-30);
IF PIN FLG EQ 1 AND PINS [CNT1l CNT2] EQ 11B THEN

PINS (11-20)=PINS (31-40) )
ELSE PINS (11-20)=PINS (1-10).

MEMORY: MAIN-MEM PINS ARE NUMBERED (1-27) AND NAMED
p1, D2, D3, D4, D5, D6, D7, D8, ADl, AD2, AD3, AD4,
AD6, AD7, ADS, AD9, AD1O, AD1l1l, AD12, AD13, AD14, AD1S5,

AD16, CNT1, CNT2, CNT3:
SIZE = 8 * 256;

SET TIME = 0:5;:
IF PINS (25-27) EQ 70 THEN PINS [D1 D2 D3 D4 D5 Dé D7 D8]

= MAIN-MEM (,(9-24)).

CHIP: MM-PC PINS ARE NUMBERED (1-20) AND NAMED IN1l, IN2;
REGISTERS ARE PC-REG(10);
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SET TIME = 3:0;
ON PULSE PC-REG = PINS (1-10) + 1 D + OD;
SET TIME = 3:1;

ON PULSE PINS (1-10) PC-REG.

MICROMEMORY: MICROMEM SIZE = 40 * 1024;
PINS ARE NUMBERED (1-50):

SET TIME = 4:0; .
ON PULSE PINS (11-50) = MEMORY (, PINS(1-10)).

CHIP: PIPELINE PINS ARE NUMBERED (1-64):
REGISTERS ARE PL-REG(32);
SET TIME = 5:0;
ON PULSE PINS (33-64) = PL-REG;

SET TIME = 5:1;
ON PULSE PL-REG = PINS (1-32).

CHIP: ALU PINS ARE NUMBERED (1-40) AND NAMED D1, D2, D3, D4,
D5, D6, D7, D8, AD1l, AD2, AD3, AD4, AD5, AD6, AD7, ADS8
AD9,AD10,AD11, AD12, AD13, AD1l4, AD15, AD16, FLG, RCL1
RCL2, FLCl, FLC2, ALl, AL2, AL3, AL4, AL5, AL6, AL7,

AL8, AL9, NXT1l, NXT2;

REGISTERS ARE REC-LATCH (8), REG-A(8), REG-B(8),
PGM-CNTR(16) ,NXT-ADDR(16),ACCUM(8), LINK(1l),FLAGS (4);

SUBREGISTERS OF FLAGS ARE ZERO 1 OVF 1, CRY 1, SIGN 1;
CASCADE LINK ACC INTO LACC;CASCADE ACC LINK INTO ACCL:

SET TIME = 6:0;
IF PINS (26-27) NOT EQ 0 THEN REC-LATCH=PINS (11-18);

IF PINS (26-27) EQ 0l1B THEN REG-A REC-LATCH;
IF PINS (26-27) EQ 10B THEN REG-A REC-LATCH;
IF PINS (26-27) EQ 11B THEN REG-A 0, REG-B = 0;

SET TIME = 6:1;

IF PINS (30-38) EQ 1 THEN ACC = A + B;
IF PINS (30-38) EQ 5 THEN ACC = A - B;
IF PINS (30-38) EQ 2 THEN ACC = A & B;
IF PINS (30-38) EQ 3 THEN ACC = A ! B;
IF PINS (30-38) EQ 4 THEN ACC = A;

IF PINS (30-38) EQ 6 THEN ACC = A XOR B;:
IF PINS (30-38) EQ 7 THEN ACC = B;

IF PINS (30-38) EQ 8 THEN ACC = NEG ACC;
IF PINS (30-38) EGQ 9 THEN ACC = SL ACC;
IF PINS (30-38) EQ 10 THEN ACC = SR ACC;
IF PINS (30-38) EQ 11 THEN LACC= SL LACC;
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IF PINS (30-38) EQ 12 THEN ACCL= SR ACCL;
IF PINS (30-38) EQ 13 THEN ACC = RL ACC;

IF PINS (30-38) EQ 14 THEN ACC = RL ACC:

IF PINS (30-38) EQ 15 THEN ACC = RR ACC;

IF ACC EQ O THEN ZERO = 1;

IF ACC(8) EQ 1 THEN SIGN = 1 ELSE SIGN = 0:

IF LINK EQ 1 THEN OVFL = 1;

IF LINK EQ 1 THEN CRY = 1;

SET TIME = 6:4;

IF PINS (7-8) EQ 1 THEN NXT-ADR((1-8)) = ACC;
IF PINS (7-8) EQ 2 THEN NXT-ADDR((9-16)) = ACC:

IF PINS (7-8) EQ 3 THEN PINS(9-16) = ACC.

/* NOW CONNECT ALL OF THE COMPONENTS TOGETHER USING
THE CONNECT STATEMENT. */
CONNECT DATA-BUS TO MAIN-MEM [(1-8)1[(1-8)1];
TO TERMI1 [(1-8)1[(1-8)1:
TO TERM2 C(1-8)]1[(1-8)1];
TO ADDR-SEL-ROM [(1-8)1[(1-8)1;
TO ALU [(1-8)]C[(1-8)1].
CONNECT ADDRESS—-RUS TO MAIN-MEM [(1-16)1[(9-24)7;
TO ALU [(1-16)]1[(9-24)1].
CONNECT CNTL-BUS TO MICRO-MEM [(21-30) (44-75)][(1-42)1;
TO MM-PC [(1-20)1[(1-20)1];
TO ADDR-SEL-MM [(1-43)]J[(1-43)1;
TO ADDR-SEL-ROM [(21-30)][(9-18)1];
TO MAIN-MEM [(93-95)]1[(25~27)1;
TO TERM1 [(93-95)1[(9-11)1];
TO TERM2 [(93-95)1[(9-11)1]:
TO ALU [41 (76-92)]1[(25-42)1;
TO PIPELINE [(31-40)(42-95)1]

[(3-12) 1 2 (33-64)(13-32)1].

START: MEMORY(,l) = O12H; MEMORY(,2) = 13H.
END OF MICRO-PGMBL-INST-COMPUTER.

END OF DESCRIPTIONS.
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APPENDIX 3.8 THE AMD LEARNING KIT

The AMD-2900 learning kit has been designed by Advanc-
ed Micro Devices to assist the engineer not familiar with
microprogramming techniques, to grasp the principles involv-
ed in microprogramming without excessive effort. This exer-
cise must be worked in conjunction with the learning kit
manual and should be studied concurrently with the board.

The introduction to the manual states "The purpose of
the kit is twofold. First it is intended to be an instruc-
tional tool for the engineer faced with his first micropro-
gramming job. The kit consists of one 2901 Bipolar micro-
processor, one AMD-2909 bipolar microprogrammer sequencer,
and several memories, registers, and multiplexers, organized
in a typical CPU structure. It should be said at the outset
that the purpose of this kit is to introduce the design
engineer to the AM2900 family devices and provide a
microprogram learning tool. This kit is not a four-bit com-
puter".
A block diagram and picture of the board is shown for
your convenience in figures 8.A and 8.B. These can be used
to study the operation of the board. The Calsim description
presented follows the plan of the board itself except for
I-O. The I-O of the board is entirely binary using toggle
switches to input zeros and ones; this has been converted to
hexadecimal input-output for user convenience. The three
sets of lights are displayed not as 12 LED's but as three
hexadecimal numbers. The switches are set by the use of

hexadecimal numbers.

SYSTEM NAME IS AMD2900LEARNING-BOARD.

LEVEL 1: AMD2900LEARNING-BOARD CONTAINS AM2901, AM2907,
CCMUX, MUX1234, ST-REG, PIPELINE-REG, PROM,
ADDR-SW, MIC-MEM, AM2909, DUMMY, DSPL-BOARD.

/* WE WILL NOW DESCRIBE THE PIPELINE REGISTER */

COMPONENT: PIPELINE-REG PINS ARE NUMBERED (1-64) AND NAMED
Do,Dl1,D2,D3, BO,B1,B2,B3, AO,Al,A2,A3, I3,I4,15,CN,
10,I1,I2,MX0, 16,1I7,1I8,MX1, PO,P1,P2,P3, BRO,BR1l,BR2,BR3
DOOUT;

REGISTER IS PL-REG(32):
SET TIME = 2:0; ON PULSE PINS (33-64) = PL-REG;
SET TIME = 2:1; ON PULSE PL-REG = PINS (1-32).
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COMPONENT: AM2901 PINS ARE NUMBERED (1-40) AND NAMED

/* THIS IS FOR DIP ONLY, FLAT HAS OTHER VALUES */
A3,A2,Al1,A0,16,18,17,RAM3, RAMO,VCC,FO,I0,1I1,
12,CP,Q3,B0,B1,B2,B3,Q0,D3,D2,D1,D0,13,1I5,14,
CN,GND, F3,GBAR,CN4,0VR, PBAR, Y0, Y1,Y2,Y3,0EBAR;

REGISTERS ARE Q-REG(4), RAM(4,16), RAM-SHIFT(4), Q-SHIFT(4):
/* WE WILL SET UP SOME WORKING REGISTERS FOR OUR USE TO
MAKE THE MANIPULATION A LITTLE EASIER TO HANDLE. */

REGISTERS ARE A(4), B(4), Q-Loop(4), R(4), sS(4), F(4):
SET TIME = 3:0;

/* WE WILL WORK THE FIRST THREE VALUES OF THE OP CODE. */

IF PINS [IO,Il,I2] EQ O THEN R = RAM( ,PINS[AO Al A2 A3l),
S = 0;

IF PINS [I0,I1,I2] EQ 1 THEN R = RAM( ,PINS[AO,Al,A2,A3]),
s = RAM( ,PINS[BO,B1,B2,B3]):

IF PINS [I0,I1,I2] EQ 2 THEN R = 0, S = Q-REG;
IF PINS [I0,I1,I2] EQ 3 THEN S = RAM( ,PINS[BO,Bl1,B2,B3]),
R = 0; )
IF PINS [I0,Il1,I2] EQ 4 THEN s = RAaM( ,PINS[AO,Al,A2,A3]),
R = 0;
IF PIUS [IO0,I1,I2] EQ 5 THEN S = RAM( ,PINS[AO,Al,A2,A3]),
R = PINS[DO,D1,D2,D3]; N
IF PINS [I0,I1,I2] EQ 6 THEN R = PINS[DO,D1,D2,D3],
» S = Q-REG;
IF PINS [IO,Il,I2] EQ 7

THEN R = PINS[DO,D1,D2,D3], S = O;
/* LETS RESET THE TIME AND WORK I5,I4,I3 */

SET TIME = 3:2;

IF PINS{13,I4,I5] EQ O THEN F = R + S;

IF PINS[I3,I4,I5] EQ 1 THEN F = S - R;

IF PINS[13,I4,I5] EQ 2 THEN F = R - S;

IF PINS[13,I4,I5] EQ 3 THEN F = R ! S;

IF PINS[I3,I4,I5] EQ 4 THEN F = R & S;

IF PINS[I3,I4,I5] EQ 5 THEN F = R & S;

IF PINS[I3,I4,I5] EQ 6 THEN F = R XOR S;

IF PINS[I3,I4,I5] EQ O THEN F = NOT (R XOR S):

/* LETS RESET TIME AND WORK I6, I7, I8 */

SET TIME = 3:3;
IF PINS [16,1I7,I8] EQ O THEN Y = F, Q = F;
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IF PINS [16,1I7,I8] EQ 1 THEN Y F;
IF PINS [16,17,I8] EQ 2 THEN Y = A RAM(,PINS (17-20)) = F;
IF PINs[16,17, 18] EQ 3 THEN Y=F, RAM(,PINS (17-20)) = F/2;
IF PINS[16,I7,I8] EQ 4 THEN Y=F RAM(,PINS (17-20)) = F/2,
Q=0 / 2, PIN RO = F(1), PIN Q0 = Q-LOOP(1);
IF PINS[I6,17,I8] EQ 5 THEN Y=F, RAM(,PINS (17-20)) = F/2,
PIN RO = F(l), PIN QO = Q-LOOP(1l);
IF PINS [I16,I7,I8] EQ 6 THEN Y =F, B= 2 * F, Q0 = Q*2,
PIN R3 = F(4), PIN Q3 = Q-LOOP(4):
IF PINs[16,I7,I8] EQ 7 THEN Y=F, RAM(,PINS (17-20)) = 2*F,
PIN R3 = F(4), PIN Q3 = Q-LOOP(4).

/* IN THIS SYSTEM WE AVOID A BUS ALTOGETHER BY CONNECTING
COMPONENTS TO EACH OTHER. SO THAT THERE IS ALWAYS SOME-
THING TO CONNECT TO WE WILL ONLY CONNECT EACH COMPONENT
AS WE GO TO THOSE ALREADY DESCRIBED. */

COMPONENT: DUMMY PINS ARE NUMBERED (1-1).
/* DUMMY CONNECTS WITH THE LOOSE WIRES SO THERE WILL BE

NO LISTED ERRORS FOR UNCONNECTED WIRES. */

CONNECT AM2901 TO PIPELINE-REGISTER
[(1-7)(12-14)(17-20) (22~-29)]
{12, 11, 10, 9, 21, 23, 22, 17, 18, 19, (5-8)
4, 3, 2, 1, (13-16)1;
TO DUMMY [15, 32, 35, 40] [1 1 1 17.

CHIP: MUX1234 PINS ARE NUMBERED (1-8) AND NAMED CNTL1l, CNTL2
RAMO, RAM3, 00, Q3, FO, ZERO:
/* THE MUX LOGIC IS GIVEN ON PAGE 3-9 OF THE AMD-29200
MANUAL. IT CONSISTS OF THE FOLLOWING:

MUX CODE UP DOWN
00 SHIFT UP O->RAMO SHIFT DOWN RAMO, -0
01 ROTATE ROTATE
10 DOUBRLE ROTATE THROUGH RAM AND Q

Q3 -> RAMO - RAMO -> Q3
RAM3 -> QO Q0 -> RAMO
11 DOUBLE SHIFT DOUBLE SHIFT
0 -> Q0 Q3->RQMO F3->RAM3 RAMO->Q3 */

/* NOTE THAT THE FOUR MUX ARE COMBINED INTO _ONE. */
/* WE SET VALUES ON PINS PRICR TO CPE ACTION. */

SET TIME = 3:4;
IF PINS(1-2) EQ 00 THEN PINS (3-6) = O:

/* PIN 8 USED HERE AS A WORKING REGISTER. */
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IF PINS(1-2) EQ 01 THEN PIN 8 = PIN 3 PIN 3 = PIN 4, PIN4 =
PIN 8 PIN 8 = PIN 5, PIN 5 = PIN 6, PIN 6 = PIN 8;

IF PINS (1-2) EQ 10 THEN PIN 8 = PIN 3, PIN 3 = PIN 6, PIN 6
= PIN 8, PIN 8 = PIN 5, PIN 5 = PIN 4, PIN 4 = PIN 8.

CONNECT MUX1234 TO PIPELINE-REGISTER [1 2] [20 24];
TO AM2901 [(3 - 7)1 [9 8 21 16 311.

CHIP: AM2909 PINS ARE NUMBERED (1-28) AND NAMED /* JUST
AS THEY ARE NAMED IN THE AMD DIP. */ REB, R3, R2, R1l, RO,
OR3, D3, OR2, D2, ORl, D1, ORO, DO, GND, ZERO, SO, Sl,
Y0, Yl, Y2, Y3, OEB, CN, CN4, FEB, PUP, CP, VCC;
REGISTERS ARE HOLDING-REG (8), ST~PNTR (2), STACK(8,4),
PC-REG(8), INCREMENTER(8), I(1l):
ON, PC-REG(I) = 10 + 0Q + OB;

SET TIME = 8:0;

/* THIS LOGIC IS BASED ON THE TABLE BELOW WHICH WAS TAKEN
FROM FIGURE 5 PAGE 2-78 AMD-2900 FAMILY DATA BOOK.
OUTPUT CONTROL

ZERO OE YI

X H zZ

L L L

H L SOURCE SELETED BY SO S1 */

IF OE EQ 1 THEN Y = ZERO, RESET TIME = 5:0;
IF (ZERO EQ Q AND OE EQ 0) THEN Y = 0, RESET TIME = 5:0;
SET TIME = 8:1;

/* NOW CONTROL IS FROM SO S1 AS PER TABLE BELOW
OCTAL sl sO SOURCE FOR Y OUTPUTS SYMBOL

0 L L MICROPROGRAM COUNTER MPC

1 L H REGISTER REG

2 H L PUSH-POP STACK STKO

3 H H DIRECT INPUTS DI */

IF PINS[SO S1] EQ SO THEN PINS [YSO Y1 Y2 Y3 Y4 Y5 Y6 Y7]
PC-REG, RESET TIME = 5:0; :
IF S1 EQ O AND SO EQ 1 THEN PIN[YO Y1 Y2 ¥3 Y4 Y5 Y6 Y7] =
HOLDING-REG, RESET TIME = 5:0;
" IF S1 EQO 1 AND SO EQ 1 THEN PIN [Y0 Y1 Y2 ¥3 Y4 Y5 Y6 Y7]
’ PINS [D1 D2 D3 D4 DS D6 D7 D81,RESET TIME = 5:
SET TIME = 8:3:

-
[

o)
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/* WE NOW HAVE PUSH-POP CASE WHICH IS BASED ON FOLLOWING:

FE PUP PUSH~-POP STACK CHANGE

H X NO CHANGE

L H INCREMENT STACK POINTER THEN PUSH
CURRENT PC ONTO STKO

L L POP STACK (DECREMENT SP) */

IF FE EQ 1 OR FE NOT EQ O THEN PINS[(12-15), (21-24) ] =
PINS[13 11 9 7 (25-28)], RESET TIME = 5:0;
IF FE EQ O AND PUP EQ O THEN PINS[(12-15)(21-24)] =
STACK (4), SP = SP -~ 1;
IF SP EQ O THEN SP = 4;
IF FE EQ O AND PUP EQ O THEN RESET TIME = 5:0;

/* INCREMENT AND PUSH REMAINS. */
ON SP = SP + 1; IF SP EQ 5 THEN SP = 1;
ON PULSE STACK(4) = PC-REG;
ON PULSE PINS[(12-15)(21-24)] = PINS[13 1 9 7 (25-28)].

CONNECT AM2909 TO PIPELINE-REGISTER [(2-5)]1[(29-32)1;
TO DUMMY [6, 15, 22, 23, 24, 27, 1J[1111111].

.CHIP: ST-REG /* LSO8 */ PINS ARE NUMBERED (1-15) AND NAMED
o7, Q0, X, bo, D1, X, Q1, X, CP, Q2, X, D2, D3, X, Q3.
TIME = 4:0; :
ON PULSE PINS (2 7 10 15) = PINS (4 5 12 13).

CONNECT ST-REG TO AM2901 [4 5 12 13]J[11 31 34 33];
TO DUMMY [3 6 8 9 11 14J[1 1111 1].

CHIP: CCMUX /*AMD-9309 */ PINS ARE NUMBERED (1-14) AND NAMED
CCE, X, S1, I0B, I1B, I2B, I3B, X, I3A, I2A, IlA, IOA,
SO0, W21B.
. TIME=5:0;
IF PIN 4 EQ 1 OR PIN 5 EQ 1 OR PIN 6 EQ 1 OR PIN 7 EQ
1 THEN PIN 1 = 1 ELSE PIN 1 = O.

e

CONNECT CCMUX TO ST-REG [(4-7)]1[2 7 10 15];:
TO PIPELINE-REGISTER [3 13 14 (9-12)][25 24 22 22 22 22 22]

CHIP: AM2907 PINS ARE NUMBERED (1 - 20) AND NAMED RLEB, RO,
AO, BUSO, GND1, BUS1l, Al, R1l, BEB, OFB, OEB, R2, A2,
BUS2, GND2, BUS3, A3, R3, DRCP, VCC.
SET TIME= 3:8;
ON PULSE PINS (2 8 12 18)
ON PULSE PINS (4 6 14 16)

PINS (3 7 13 17);
PINS (3 7 13 17).

CONNECT AM2907 TO AM2901 [3, 7, 13, 17]1[(36-39)1:
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TO DUMMY [1, (9-11)]1f1, 1, 1, 1].

MICROMEMORY: MIC-MEM PINS ARE NUMBERED (1-36),
TIME = 1:0
ON PULSE PINS (1-32) = MEMORY (PINS(33-36)).

CONNECT MIC-MEM TO PIPELINE~REGISTER[ (1-32)][(33-64)1]:;
TO AM2909 [(33-36)][(18-21)1].

CHIP: PROM PINS ARE NUMBERED (1-14) AND NAMED Q0 Ql 02 Q3 Q4
Q5 Q6 Q7 X AO Al A2 A3 A4.
TIME = 6:0;

REGISTER SLCT(5); ON PULSE SLCT = PINS (10-14);
REGISTER OUTPUT(8):

IF SLCT=0 THEN OUTPUT = 8AH;
IF SLCT=l THEN OUTPUT = 81H;
IF SLCT=2 OR SLCT=3 THEN OUTPUT = OAH:
IF SLCT=4 OR SLCT=5 THEN OUTPUT = 02H:
IF SLCT=6 OR SLCT=7 THEN OUTPUT = OEH;
IF SLCT=8 THEN OUTPUT = B89H:
IF SLCT=9 THEN OUTPUT = 82H;
IF SLCT=10 OR SLCT=11] THEN OUTPUT = 09H:
IF SLCT=12 OR SLCT=13 THEN OUTPUT = 04H;
IF SLCT=14 OR SLCT=15 THEN OUTPUT = 06H;
IF SLCT=16 THEN OUTPUT = 86H;
IF SLCT=17 THEN OUTPUT = 80H:
IF SLCT=18 OR SLCT=19 THEN OUTPUT = OlH:
IF SLCT=20 OR SLCT=21 THEN OUTPUT = O0OOH:
IF SLCT=22 . THEN OUTPUT = 86H:
IF SLCT=23 THEN OUTPUT = 80H;
IF SLCT=24 OR SLCT=26 THEN OUTPUT = 82H;
IF SLCT=25 OR SLCT=27 THEN OUTPUT = B8AH;:
IF SLCT=28 OR SLCT=30 THEN OUTPUT = 82H;:
IF SLCT=29 OR SLCT=31 THEN OUTPUT = 8AH;

SET TIME = 6:9; ON PULSE PINS (1-7) = OUTPUT.

CONNECT PROM TO PIPELINE REGISTER [(11-14)][(25-28)]:;
TO AMD2909 [(5-7) 1]J[12 10 8 26];:

TO ST-REG [8][11];
TO DUMMY [9]1[1];
TO cc-MUX[10]1[1].

COMPONENT: DSPL-BOARD IS NUMBERED (1-32) AND NAMED Y3, Y2,
Yl, Yo, MP3, MP2, MP1l, MPO, CN4, OVF, F3, FO, PAR
CCE, PBAR, GBAR, ST3, ST2, ST1l, STO, Q0, Q3, RAMO
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RAM3, BUS3, BUS2, BUS1l, BUSO, R3, R2, Rl, RO:
REGISTER: DSP (4,8):;

TIME = 1:9; ON PULSE DSP = PINS (1-32):
TIME = 2:9; ON PULSE DSP = PINS (1-32):
TIME = 3:9; ON PULSE DSP = PINS (1-32):
TIME = 4:9; ON PULSE DSP = PINS (1-32):.
TIME = 5:9; ON PULSE DSP = PINS (1-32):
TIME = 6:9; ON PULSE DSP = PINS (1-32):
TIME = 7:9; ON PULSE DSP = PINS (1-32);
TIME = 8:9; ON PULSE DSP = PINS (1-32).

CONNECT DSPL-BOARD TO AMD2909[(1-4)J[21 20 19 181;
TO AMD2901 [(5-12) (21-24) 18 19]
[39 38 37 36 21 16 $ 8 35 32];

. . TO AMD2907 [16 (25-32)]1 -
{10 16 14 6 4 18 12 8 21;

TO ST-REG [(20-23) 17]1[2 7 10 15 1].

CHIP: ADDR-SW PINS ARE NUMBERED (1-14) AND NAMED S, 1A 1B
1Y 2A 2B 2Y X 3Y 3B 3A 4Y 4B 4A.
TIME = 7:0;
ON PULSE PIN 9 = PIN 14, PIN 7 = PIN 5, PIN 4 = PIN 2.
CONNECT ADDR-SW TO PROM [2 5 11][(2-4);

TO AMD2909 [4 7 91[25 17 161;
TO DUMMY[3 6 10 13 14 1 12J[1 1111 1 17.

END OF AMD2900LEARNING-BOARD.

END OF DESCRIPTIONS.
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TABLE 8.I MICROPRCRGAM FIELD DESCRIPTIONS

RAM & ROM BIT BIT FIELD
MUX SEL LOCATION NUMBER DEFINTION DEFINITION
0 U2 0 DO "D" DATA
1 D1
2 D2
3 D3
1 U3 4 BO “"B" ADDR
5 Bl
6 B2
7 B3
2 U4 8 A0 "A" ADDR"
a Al
10 A2
. 11 A3
3 Us 12 I3 ALU SEE TABLES
13 I4 IN AM2901 DATA
14 I5 SPECIFICATION.
15 CN -
4 U6 16 I0 ALU SEE TABLES
17 Il
18 12
19 MUXO SEE MUX TABLE
5 u7 20 16 ALU SEE TABLES
21 17
22 18
23 MUX1 SEE MUX TABLE
6 Us 24 PO SEE TABLES FOR
25 231 NEXT INSTRUCTION
26 P2 :
27 P3
7 U 28 BRO BRANCH ADDRESS
29 BR1 :
30 BR2
31 BR3
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